ملاحظات
الفصل الأول: مقدمة
(1)
P. W. Atkins,‘Magnetic field effects’, Chemistry in Britain, vol. 12 (1976), p.
214.
(2)
S. Emlen, W. Wiltschko, N. Demong and R. Wiltschko,
‘Magnetic direction finding: evidence for its use in migratory
indigo buntings’, Science, vol.
193 (1976), pp. 505–8.
الفصل الثاني: ما الحياة؟
(1)
S. Harris, ‘Chemical potential: turning carbon
dioxide into fuel’, The Engineer, 9 August 2012,
http://www.theengineer.co.uk/energy-and-environment/in-depth/chemical-potential-turning-carbon-dioxide-into-fuel/1013459.article#ixzz2upriFA00.
(2)
Die
Naturwissenschaften, vol. 20 (1932), pp.
815–21.
(3)
Pascual Jordan, 1938, quoted in P. Galison,
M. Gordin and D. Kaiser, eds, Quantum
Mechanics: Science and Society (London:
Routledge, 2002), p. 346.
(4)
H. C. Longuet-Higgins, ‘Quantum mechanics and
biology’, Biophysical Journal, vol. 2 (1962), pp.
207–15.
(5)
M. P. Murphy and L. A. J. O’ Neil, eds, What is Life? The Next Fifty Years: Speculations on the Future of Biology
(Cambridge: Cambridge University Press,
1995).
الفصل الثالث: مُحرِّكات الحياة
(1)
R. P. Feynman, R. B. Leighton and M. L. Sands,
The Feynman Lectures on Physics (Reading, MA:
Addison-Wesley, 1964), vol. 1, pp. 3–6.
(2)
M. H. Schweitzer, Z. Suo, R. Avci, J. M. Asara, M.
A. Allen, F. T. Arce and J. R. Horner, ‘Analyses of soft tissue from
Tyrannosaurus rexsuggest the presence of protein’, Science, vol. 316: 5822 (2007), pp.
277–80.
(3)
J. Gross, ‘How tadpoles lose their tails: path to
discovery of the first matrix metalloproteinase’, Matrix Biology, vol. 23: 1 (2004), pp.
3–13.
(4)
G. E. Lienhard, ‘Enzymatic catalysis and
transition-state theory’, Science, vol. 180: 4082 (1973), pp.
149–54.
(5)
C. Tallant, A. Marrero and F. X. Gomis-Ruth,
‘Matrix metalloproteinases: fold and function of their catalytic
domains’, Biochimica et Biophysica Acta (Molecular Cell
Research), vol. 1803: 1 (2010), pp.
20–8.
(6)
A. J. Kirby, ‘The potential of catalytic
antibodies,’ Acta Chemica
Scandinavica, vol. 50: 3 (1996), pp.
203–10.
(7)
Don DeVault and Britton Chance, ‘Studies of
photosynthesis using a pulsed laser: I. Temperature dependence of
cytochrome oxidation rate in chromatium. Evidence for tunneling’,
BioPhysics, vol. 6 (1966), p.
825.
(8)
J. J. Hopfield, ‘Electron transfer between
biological molecules by thermally activated tunneling’, Proceedings of the National Academy of Sciences, vol. 71 (1974), pp. 3640–4.
(9)
Yuan Cha, Christopher J. Murray and Judith
Klinman, ‘Hydrogen tunnelling in enzyme reactions’, Science, vol. 243: 3896 (1989), pp.
1325–30.
(10)
L. Masgrau, J. Basran, P. Hothi, M. J. Sutcliffe
and N. S. Scrutton, ‘Hydrogen tunneling in quinoproteins’,
Archives of Biochemistry and Biophysics, vol. 428: 1 (2004),
pp. 41–51; L. Masgrau, A. Roujeinikova, L. O. Johannissen, P.
Hothi, J. Basran, K. E. Ranaghan, A. J. Mulholland, M. J. Sutcliffe,
N. S. Scrutton and D. Leys,‘Atomic description of an
enzyme reaction dominated by proton tunneling’, Science, vol. 312: 5771 (2006), pp.
237–41.
(11)
David R. Glowacki, Jeremy N. Harvey and Adrian J.
Mulholland, ‘Taking Ockham’s razor to enzyme dynamics and
catalysis’, Nature Chemistry,
vol. 4 (2012), pp. 169–76.
الفصل الرابع: النبضة الكمية
(1)
From the BBC TV series Fun to Imagine 2: Fire
(1983), available on YouTube:
http://www.youtube.com/watch?v=ITpDrdtGAmo.
(2)
Interview with CBC News, available at:
http://www.cbc.ca/news/technology/quantum-weirdness-used-by-plants-animals-1.912061.
(3)
G. S. Engel, T. R. Calhoun, E. L. Read, T-K. Ahn,
T. Mančal, Y-C. Cheng, R. E. Blankenship and G. R. Fleming,
‘Evidence for wavelike energy transfer through quantum coherence
in photosynthetic systems’, Nature, vol. 446 (2007), pp.
782–6.
(4)
I. P. Mercer, Y. C. El-Taha, N. Kajumba, J. P.
Marangos, J. W. G. Tisch, M. Gabrielsen, R. J. Cogdell, E.
Springate and E. Turcu, ‘Instantaneous mapping of coherently
coupled electronic transitions and energy transfers in a
photosynthetic complex using angle-resolved coherent optical
wave-mixing’, Physical Review
Letters, vol. 102: 5 (2009), pp.
057402.
(5)
E. Collini, C. Y. Wong, K. E. Wilk, P. M. Curmi,
P. Brumer and G. D. Scholes, ‘Coherently wired light-harvesting in
photosynthetic marine algae at ambient temperature’, Nature, vol. 463: 7281 (2010), pp.
644–7.
(6)
G. Panitchayangkoon, D. Hayes, K. A. Fransted, J.
R. Caram, E. Harel, J. Wen, R. E. Blankenship and G. S. Engel,
‘Long-lived quantum coher-ence in photosynthetic complexes at
physiological temperature’, Proceedings of
the National Academy of Sciences, vol. 107: 29
(2010), pp. 12766–70.
(7)
T. R. Calhoun, N. S. Ginsberg, G. S.
Schlau-Cohen, Y. C. Cheng, M. Ballottari, R. Bassi and G. R.
Fleming, ‘Quantum coherence enabled determination of the energy
landscape in light-harvesting complex II’, Journal of Physical Chemistry B, vol. 113: 51
(2009), pp. 16291–5.
الفصل الخامس: البحث عن موطن نيمو
(1)
Exodus 30: 34–5.
(2)
Quoted in A. Le Guerer, Scent: The Mysterious and Essential Power of Smell (New York: Kodadsha America
Inc., 1994), p. 12.
(3)
R. Eisner, ‘Richard Axel: one of the nobility in
science’, P&S Columbia University College of Physicians and
Surgeons, vol. 25: 1 (2005).
(4)
C. S. Sell, ‘On the unpredictability of odor’,
Angewandte Chemie, International Edition
(English), 45: 38 (2006), pp.
6254–61.
(5)
K. Mori and G. M. Shepherd, ‘Emerging principles
of molecular signal processing by mitral/tufted cells in the
olfactory bulb’, Seminars in
Cell Biology, vol. 5: 1 (1994), pp.
65–74.
(6)
L. Turin, The Secret of
Scent: Adventures in Perfume and the Science of Smell (London: Faber &
Faber, 2006), p. 4.
(7)
L. Turin, ‘A spectroscopic mechanism for primary
olfactory reception’, Chemical
Senses, vol. 21: 6 (1996), pp.
773–91.
(8)
Turin, The Secret of
Scent, p. 176.
(9)
C. Burr, The Emperor of
Scent: A True Story of Perfume and Obsession (New
York: Random House, 2003).
(10)
A. Keller and L. B. Vosshall, ‘A psychophysical
test of the vibration theory of olfaction’, Nature Neuroscience, vol. 7: 4 (2004),
pp. 337–8.
(11)
M. I. Franco, L. Turin, A. Mershin and E. M.
Skoulakis, ‘Molecular vibration-sensing component in Drosophila melanogaster olfaction’,
Proceedings of the National Academy of
Science, vol. 108: 9 (2011), pp.
3797–802.
(12)
J. C. Brookes, F. Hartoutsiou, A. P. Horsfield
and A. M. Stoneham, ‘Could humans recognize odor by phonon
assisted tunneling?’, Physical Review Letters, vol. 98: 3
(2007), p. 038101.
الفصل السادس: الفراشة وذبابة الفاكهة وطائر أبي الحناء الكمِّي
(1)
F. A. Urquhart, ‘Found at last: the monarch’s
winter home’, National
Geographic, Aug. 1976.
(2)
R. Stanewsky, M. Kaneko, P. Emery, B. Beretta, K.
Wager-Smith, S. A. Kay, M. Rosbash and J. C. Hall, ‘The cryb
mutation identifies cryp- tochrome as a circadian photoreceptor in
Drosophila’, Cell, vol. 95: 5 (1998), pp.
681–92.
(3)
H. Zhu, I. Sauman, Q. Yuan, A. Casselman, M.
Emery-Le, P. Emery and S. M. Reppert, ‘Cryptochromes define a novel
circadian clock mechanism in monarch butterflies that may underlie
sun compass navigation’, PLOS
Biology, vol. 6: 1 (2008), e4.
(4)
D. M. Reppert, R. J. Gegear and C. Merlin,
‘Navigational mechanisms of migrating monarch butterflies’,
Trends in Neurosciences, vol.
33: 9 (2010), pp. 399–406.
(5)
P. A. Guerra, R. J. Gegear and S. M. Reppert, ‘A
magnetic compass aids monarch butterfly migration’, Nature Communications, vol. 5: 4164
(2014), pp. 1–8.
(6)
A. T. von Middendorf, Die
Isepiptesen Russlands Grundlagen zur Erforschung der Zugzeiten und
Zugrichtungen der Vögel Russlands (St Petersburg,
1853).
(7)
H. L. Yeagley and F. C. Whitmore, ‘A preliminary
study of a physical basis of bird navigation’, Journal of Applied Physics, vol. 18:
1035 (1947).
(8)
M. M. Walker, C. E. Diebel, C. V. Haugh, P. M.
Pankhurst, J. C. Montgomery and C. R. Green, ‘Structure and
function of the vertebrate magnetic sense’, Nature, vol. 390: 6658 (1997), pp. 371
6.
(9)
M. Hanzlik, C. Heunemann, E. Holtkamp-Rotzler, M.
Winklhofer, N. Petersen and G. Fleissner, ‘Superparamagnetic
magnetite in the upper beak tissue of homing pigeons’, Biometals, vol. 13: 4 (2000), pp.
325–31.
(10)
C. V. Mora, M. Davison, J. M. Wild and M. M.
Walker, ‘Magnetoreception and its trigeminal mediation in the
homing pigeon’, Nature, vol.
432 (2004), pp. 508–11.
(11)
C. Treiber, M. Salzer, J. Riegler, N. Edelman, C.
Sugar, M. Breuss, P. Pichler, H. Cadiou, M. Saunders, M. Lythgoe,
J. Shaw and D. A. Keays, ‘Clusters of iron-rich cells in the upper
beak of pigeons are macrophages not magnetosensitive neurons’,
Nature, vol. 484 (2012), pp.
367–70.
(12)
S. T. Emlen, W. Wiltschko, N. J. Demong, R.
Wiltschko and S. Bergman, ‘Magnetic direction finding: evidence
for its use in migratory indigo buntings’, Science, vol. 193: 4252 (1976), pp.
505–8.
(13)
L. Pollack, ‘That nest of wires we call the
imagination: a history of some key scientists behind the bird
compass sense’, May 2012, p. 5:
http://www.ks.uiuc.edu/History/magnetoreception.
(14)
Ibid., p. 6.
(15)
K. Schulten, H. Staerk, A. Weller, H-J. Werner
and B. Nickel, ‘Magnetic field dependence of the geminate
recombination of radical ion pairs in polar solvents’, Zeitschrift für Physikale Chemie, n. s.,
vol. 101 (1976), pp. 371–90.
(16)
Pollack, ‘That nest of wires we call the
imagination’, p. 11.
(17)
K. Schulten, C. E. Swenberg and A. Weller, ‘A
biomagnetic sensory mechanism based on magnetic field modulated
coherent electron spin motion’, Zeitschrift für Physikale Chemie, n.s., vol. 111
(1978), pp. 1–5.
(18)
From P. Hore, ‘The quantum robin’, Navigation News, Oct.
2011.
(19)
N. Lambert, ‘Quantum biology’, Nature Physics, vol. 9: 10 (2013), and
references therein.
(20)
M. J. M. Leask, ‘A physicochemical mechanism for
magnetic field detection by migratory birds and homing pigeons’,
Nature, vol. 267 (1977), pp.
144–5.
(21)
T. Ritz, S. Adem and K. Schulten, ‘A model for
photoreceptor-based magnetoreception in birds’, Biophysical Journal, vol. 78: 2 (2000),
pp. 707–18.
(22)
M. Liedvogel, K. Maeda, K. Henbest, E.
Schleicher, T. Simon, C. R. Timmel, P. J. Hore and H. Mouritsen,
‘Chemical magnetoreception: bird cryptochrome 1a is excited by
blue light and forms long-lived radical-pairs’, PLOS One, vol. 2: 10 (2007),
e1106.
(23)
C. Nießner, S. Denzau, K. Stapput, M. Ahmad, L.
Peichl, W. Wiltschko and R. Wiltschko, ‘Magnetoreception:
activated cryptochrome 1a concurs with magnetic orientation in
birds’, Journal of the Royal
Society Interface, vol. 10: 88 (6 Nov.
2013), 20130638.
(24)
T. Ritz, P. Thalau, J. B. Phillips, R. Wiltschko
and W. Wiltschko, ‘Resonance effects indicate a radical-pair
mechanism for avian magnetic compass’, Nature, vol. 429 (2004), pp.
177–80.
(25)
S. Engels, N-L. Schneider, N. Lefeldt, C. M.
Hein, M. Zapka, A. Michalik, D. Elbers, A. Kittel, P. J. Hore and
H. Mouritsen, ‘Anthropogenic electromagnetic noise disrupts
magnetic compass orientation in a migratory bird’, Nature, vol. 509 (2014), pp.
353–6.
(26)
E. M. Gauger, E. Rieper, J. J. Morton, S. C.
Benjamin and V. Vedral, ‘Sustained quantum coherence and
entanglement in the avian compass’, Physical Review Letters, vol. 106: 4 (2011),
040503.
(27)
M. Ahmad, P. Galland, T. Ritz, R. Wiltschko and
W. Wiltschko, ‘Magnetic intensity affects cryptochrome-dependent
responses in Arabidopsis
thaliana’, Planta,
vol. 225: 3 (2007), pp. 615–24.
(28)
M. Vacha, T. Puzova and M. Kvicalova, ‘Radio
frequency magnetic fields disrupt magnetoreception in American
cockroach’, Journal of Experimental
Biology, vol. 212: 21 (2009), pp. 3473–7.
الفصل السابع: الجينات الكمية
(1)
Y. M. Shtarkman, Z. A. Kocer, R. Edgar, R. S.
Veerapaneni, T. D’Elia, P. F. Morris and S. O. Rogers, ‘Subglacial
Lake Vostok (Antarctica) accretion ice contains a diverse set of
sequences from aquatic, marine and sediment-inhabiting bacteria and
eukarya’, PLOS One, vol. 8: 7
(2013), e67221.
(2)
J. D. Watson and F. H. C. Crick, ‘Molecular
structure of nucleic acids: a structure for deoxyribose nucleic
acid’, Nature, vol. 171 (1953),
pp. 737–8.
(3)
C. Darwin, On the
Origin of Species, ch. 4.
(4)
J. D. Watson and F. H. C. Crick, ‘Genetic
implications of the structure of deoxyribonucleic acid’, Nature, vol. 171 (1953), pp.
964–9.
(5)
W. Wang, H. W. Hellinga and L. S. Beese,
‘Structural evidence for the rare tautomer hypothesis of
spontaneous mutagenesis’, Proceedings
of the National Academy of
Sciences, vol. 108: 43 (2011), pp.
17644–8.
(6)
A. Datta and S. Jinks-Robertson, ‘Association of
increased spontaneous mutation rates with high levels of
transcription in yeast’, Science, vol. 268: 5217 (1995), pp.
1616–19.
(7)
J. Bachl, C. Carlson, V. Gray-Schopfer, M.
Dessing and C. Olsson, ‘Increased transcription levels induce
higher mutation rates in a hypermutating cell line’, Journal of Immunology, vol. 166: 8
(2001), pp. 5051–7.
(8)
P. Cui, F. Ding, Q. Lin, L. Zhang, A. Li, Z.
Zhang, S. Hu and J. Yu, ‘Distinct contributions of replication and
transcription to mutation rate variation of human genomes’,
Genomics, Proteomics and
Bioinformatics, vol. 10: 1 (2012), pp.
4–10.
(9)
J. Cairns, J. Overbaugh and S. Millar, ‘The
origin of mutants’, Nature,
vol. 335 (1988), pp. 142–5.
(10)
John Cairns on Jim Watson, Cold Spring Harbor
Oral History Collection. Interview available at:
http://library.cshl.edu/oralhistory/interview/james-d-watson/meeting-jim-watson/watson/.
(11)
J. Gribbin, In Search of
Schrödinger’s Cat (London: Wildwood House, 1984;
repr. Black Swan, 2012).
(12)
J. McFadden and J. Al-Khalili, ‘A quantum
mechanical model of adaptive mutation’, Biosystems, vol. 50: 3 (1999), pp.
203–11.
(13)
J. McFadden, Quantum
Evolution (London: HarperCollins,
2000).
(14)
A critical review is published here:
http://arxiv.org/abs/quant-ph/0101019 and our response can be
found here:
http://arxiv.org/abs/quant-ph/0110083.
(15)
H. Hendrickson, E. S. Slechta, U. Bergthorsson,
D. I. Andersson and J. R. Roth, ‘Amplification-mutagenesis:
evidence that “directed” adaptive mutation and general
hypermutability result from growth with a selected gene
amplification’, Proceedings of the
National Academy of Sciences, vol. 99: 4 (2002),
pp. 2164–9.
(16)
e.g. J. D. Stumpf, A. R. Poteete and P. L.
Foster, ‘Amplification of lac
cannot account for adaptive mutation to Lac+ in Escherichia coli’, Journal of Bacteriology, vol. 189: 6
(2007), pp. 2291–9.
(17)
e.g. E. S. Kryachko, ‘The origin of spontaneous
point mutations in DNA via Löwdin mechanism of proton tunneling in
DNA base pairs: cure with covalent base pairing’, International Journal Of Quantum Chemistry, vol. 90: 2 (2002),
pp. 910–23; Zhen Min Zhao, Qi Ren Zhang, Chun Yuan Gao and Yi
Zhong Zhuo, ‘Motion of the hydrogen bond proton in cytosine and
the transition between its normal and imino states’, Physics Letters A, vol. 359: 1 (2006),
pp. 10–13.
الفصل الثامن: العقل
(1)
Interview for the Los
Angeles Times, 14 Feb. 1995.
(2)
J-M. Chauvet, E. Brunel-Deschamps, C. Hillaire and
J. Clottes, Dawn of Art. The Chauvet Cave: The Oldest Known
Paintings in the World (New York: Harry N. Abrams,
1996).
(3)
Quoted in J. Hadamard, Essay on the Psychology of Invention in the Mathematical Field (Princeton:
Princeton University Press, 1945). However, according to Daniel
Dennett in ‘Memes and the exploitation of imagination’, Journal of Aesthetics and Art
Criticism, vol. 48 (1990), pp. 127–35 (available at
http://ase.tufts.edu/cogstud/dennett/papers/memeimag.htm#5), this
oft-quoted passage is probably not from Mozart and is of uncertain
origin. We have nevertheless decided to retain it because its
author, whoever that is, managed to describe a familiar but
remarkable phenomenon very nicely.
(4)
J. McFadden, ‘The CEMI field theory gestalt
information and the meaning of meaning’, Journal of Consciousness Studies, vol. 20: 3–4
(2013), pp. 152–82.
(5)
Chauvet et al., Dawn of
Art.
(6)
M. Kinsbourne, ‘Integrated cortical field model
of consciousness’, in Experimental and
Theoretica Studies of Consciousness, CIBA Foundation
Symposium No. 174 (Chichester: Wiley,
2008).
(7)
K. Saeedi, S. Simmons, J. Z. Salvail, P. Dluhy,
H. Riemann, N. V. Abrosimov, P. Becker, H.-J. Pohl, J. J. L.
Morton and M. L. W. Thewalt, ‘Room-temperature quantum bit storage
exceeding 29 minutes using ionized donors in silicon-28’,
Science, vol. 342: 6160
(2013), ppp. 830–33.
(8)
D. Hofstadter, Gödel,
Escher, Bach: An Eternal Golden Braid (New York:
Basic Books, 1999; first publ. 1979).
(9)
R. Penrose, Shadows of
the Mind: A Search for the Missing Science of Consciousness (Oxford: Oxford
University Press, 1994).
(10)
S. Hameroff, ‘Quantum computation in brain
microtubules? The Penrose–Hameroff “Orch OR” model of
consciousness’, Philosophical Transactions of the Royal Society Series
A, vol. 356: 1743 (1998), pp. 1869–95; S. Hameroff
and R. Penrose, ‘Consciousness in the universe: a review of the
“Orch OR” theory’, Physics of Life
Reviews, vol. 11 (2014), pp.
39–78.
(11)
M. Tegmark, ‘Importance of quantum decoherence in
brain processes’, Physical Review
E, vol. 61 (2000), pp.
4194–206.
(12)
See e.g. A. Litt, C. Eliasmith, F. W. Kroon, S.
Weinstein and P. Thagard, ‘Is the brain a quantum computer?’,
Cognitive Science, vol. 30: 3
(2006), pp. 593–603.
(13)
G. Bernroider and J. Summhammer, ‘Can quantum
entanglement between ion transition states effect action potential
initiation?’, Cognitive
Computation, vol. 4 (2012), pp.
29–37.
(14)
McFadden, Quantum
Evolution; J. McFadden, ‘Synchronous firing and its
influence on the brain’s electromagnetic field: evidence for an
electromagnetic theory of consciousness’, Journal of Consciousness Studies, vol. 9 (2002), pp.
23–50; S. Pockett, The Nature of
Consciousness: A Hypothesis (Lincoln, NE: Writers
Club Press, 2000); E. R. John, ‘A field theory of consciousness’,
Consciousness and Cognition,
vol. 10: 2 (2001), pp. 184–213; J. McFadden, ‘The CEMI field
theory closing the loop’, Journal of
Consciousness Studies, vol. 20: 1–2 (2013), pp.
153–68.
(15)
McFadden, ‘The CEMI field theory gestalt
information and the meaning of meaning’.
(16)
C. A. Anastassiou, R. Perin, H. Markram and C.
Koch, ‘Ephaptic coupling of cortical neurons’, Nature Neuroscience, vol. 14: 2 (2011),
pp. 217–23; F. Frohlich and D. A. McCormick, ‘Endogenous electric
fields may guide neocortical network activity’, Neuron, vol. 67: 1 (2010), pp.
129–43.
(17)
McFadden, ‘The CEMI field theory closing the
loop’.
(18)
W. Singer, ‘Consciousness and the structure of
neuronal representations’, Philosophical
Transactions of the Royal Society B: Biological Sciences, vol. 353: 1377
(1998), pp. 1829–40.
الفصل التاسع: كيف بدأت الحياة؟
(1)
S. L. Miller, ‘A production of amino acids under
possible primitive earth conditions’, Science, vol. 117: 3046 (1953), pp.
528–9.
(2)
G. Cairns-Smith, Seven
Clues to the Origin of Life: A Scientific Detective Story (Cambridge: Cambridge
University Press, 1985; new edn 1990).
(3)
McFadden, Quantum
Evolution; J. McFadden and J. Al-Khalili, ‘Quan- tum
coherence and the search for the first replicator’, in D. Abbott,
P. C. Davies and A. K. Patki, eds, Quantum
Aspects of Life (London: Imperial College Press,
2008).
(4)
A. Patel, ‘Quantum algorithms and the genetic
code’, Pramana Journal of Physics, vol. 56 (2001), pp.
367–81; available at
http://arxiv.org/pdf/quant-ph/0002037.pdf.
الفصل العاشر: علم الأحياء الكمي: الحياة على حافةِ عاصفة
(1)
M. B. Plenio and S. F. Huelga,
‘Dephasing-assisted transport: quantum networks and biomolecules’,
New Journal of Physics, vol.
10 (2008), 113019; F. Caruso, A. W. Chin, A. Datta, S. F. Huelga
and M. B. Plenio, ‘Highly efficient energy excitation transfer in
light-harvesting complexes: the fundamental role of noise-assisted
transport’, Journal of Chemical Physics, vol. 131
(2009), 105106–21.
(2)
M. Mohseni, P. Rebentrost, S. Lloyd and A.
Aspuru-Guzik, ‘Environment-assisted quantum walks in photosynthetic
energy transfer’, Journal of Chemical Physics, vol. 129: 17
(2008), 174106.
(3)
B. Misra and G. Sudarshan, ‘The Zeno paradox in
quantum theory’, Journal of Mathematical
Physics, vol. 18 (1977), p. 746:
http://dx.doi.org/10.1063/1.523304.
(4)
S. Lloyd, M. Mohseni, A. Shabani and H. Rabitz,
‘The quantum Goldilocks effect: on the convergence of timescales
in quantum transport’, arXiv preprint, arXiv:1111.4982,
2011.
(5)
A. W. Chin, S. F. Huelga and M. B. Plenio,
‘Coherence and decoherence in biological systems: principles of
noise-assisted transport and the origin of long-lived coherences’,
Philosophical Transactions of the
Royal Society A, vol. 370 (2012), pp.
3658–71; A. W. Chin, J. Prior, R. Rosenbach, F. Caycedo-Soler, S.
F. Huelga and M. B. Plenio, ‘The role of non-equilibrium
vibrational structures in electronic coherence and recoherence in
pigment-protein complexes’, Nature
Physics, vol. 9: 2 (2013), pp.
113–18.
(6)
E. J. O’Reilly and A. Olaya-Castro,
‘Non-classicality of molecular vibrations activating electronic
dynamics at room temperature’, Nature Communications, vol. 5 (2014),
article no. 3012.
(7)
I. Stewart, Does God Play
Dice?: The New Mathematics of Chaos (Harmondsworth:
Penguin UK, 1997); S. Kauffman. The
Origins of Order: Self-Organization and Selection in
Evolution (New York: Oxford University Press, 1993);
J. Gleick, Chaos: Making a New Science
(New York: Random House, 1997).
(8)
M. O. Scully, K. R. Chapin, K. E. Dorfman, M. B.
Kim and A. Svidzin-sky, ‘Quantum heat engine power can be
increased by noise-induced coherence’, Proceedings of the National Academy of Sciences,
vol. 108: 37 (2011), pp. 15097–100.
(9)
K. E. Dorfman, D. V. Voronine, S. Mukamel and M.
O. Scully, ‘Photosynthetic reaction center as a quantum heat
engine’, Proceedings of the National Academy of
Sciences, vol. 110: 8 (2013), pp.
2746–51.
(10)
M. Ferretti, V. I. Novoderezhkin, E. Romero, R.
Augulis, A. Pandit, D. Zigmantas and R. Van Grondelle, ‘The nature
of coherences in the B820 bacteriochlorophyll dimer revealed by
two-dimensional electronic spectroscopy’, Physical Chemistry Chemical Physics, vol. 16 (2014),
pp. 9930–9.
(11)
C. R. Pudney, A. Guerriero, N. J. Baxter, L. O.
Johannissen, J. P. Waltho, Hay and N. S. Scrutton, ‘Fast protein
motions are coupled to enzyme H-transfer reactions’, Journal of the American Chemical
Society, vol. 135 (2013), pp.
2512–17.
(12)
J. P. Klinman and A. Kohen,‘Hydrogen tunnelling
links protein dynam- ics to enzyme catalysis’, Annual Review of Biochemistry, vol. 82
(2013), pp. 471–96.
(13)
R. Armstrong and N. Spiller, ‘Living quarters’,
Nature, vol. 467 (2010), pp.
916–19.
(14)
S. Ludec, The Mechanism
of Life (London: William Heinemann,
1914).
(15)
T. Toyota, N. Maru, M. M. Hanczyc, T. Ikegami and
T. Sugawara, ‘Self-propelled oil droplets consuming “fuel”
surfactant’, Journal of the American Chemical Society, vol.
131: 14 (2009), pp. 5012–13.
(16)
I. A. Chen, K. Salehi-Ashtiani and J. W. Szostak,
‘RNA catalysis in model protocell vesicles’, Journal of the American Chemical
Society, vol. 127: 38 (2005), pp.
13213–19.
(17)
R. J. Peters, M. Marguet, S. Marais, M. W.
Fraaije, J. C. van Hest and Lecommandoux, ‘Cascade reactions in
multicompartmentalized polymersomes’. Angewandte Chemie International Edition (English),
vol. 53: 1 (2014), pp. 146–50.
(18)
D. Hayes, G. B. Griffin and G. S. Engel,
‘Engineering coherence among excited states in synthetic
heterodimer systems’, Science,
vol. 340: 6139 (2013), pp. 1431–4.
(19)
Dorfman et al.,‘Photosynthetic reaction center as
a quantum heat engine’.
(20)
C. Creatore, M. A. Parker, S. Emmott and A. W.
Chin, ‘An efficient biologically-inspired photocell enhanced by
quantum coherence’, arXiv preprint, arXiv:1307.5093,
2013.
(21)
C. Tan, S. Saurabh, M. P. Bruchez, R. Schwartz
and P. Leduc, ‘Molecular crowding shapes gene expression in
synthetic cellular nanosystems’, Nature
Nanotechnology, vol. 8: 8 (2013), pp. 602–8; M. S.
Cheung, D. Klimov and D. Thirumalai, ‘Molecular crowding enhances
native state stability and refolding rates of globular proteins’,
Proceedings of the National Academy of
Sciences, vol. 102: 13 (2005), pp.
4753–8.