المراجع

المقدمة

  • Schrödinger, E., 1967. What Is Life? Cambridge: Cambridge University Press.

الفصل الأول: جذور الكيمياء الحيوية

  • Hein, G., 1961. The Liebig-Pasteur controversy: Vitality without vitalism. Journal of Chemical Education, 38(12), p.614.
  • Kohler, R., 1971. The background to Eduard Buchner’s discovery of cell-free fermentation. Journal of the History of Biology, 4(1), pp.35–61.
  • Hofmeister, F., 1902. Über Bau und Gruppierung der Eiweisskörper. Ergebnisse der Physiologie, 1(1), pp.759–802.
  • Fischer, E., 1906. Untersuchungen über Aminosäuren, Polypeptide und Proteïne. Berichte der deutschen chemischen Gesellschaft, 9(1), pp.530–610.
  • Sanger, F. and Tuppy, H., 1951. The amino-acid sequence in the phenylalanyl chain of insulin. 1: The identification of lower peptides from partial hydrolysates. Biochemical Journal, 49(4), pp.463–81.
  • Sanger, F. and Thompson, E., 1953. The amino-acid sequence in the glycyl chain of insulin. 1: The identification of lower peptides from partial hydrolysates. Biochemical Journal, 53(3), pp.353–66.
  • Pauling, L., 1951. The Nature of the Chemical Bond and the Structure of Molecules and Crystals. Ithaca, NY: Cornell University Press.
  • Pauling, L., Corey, R., and Branson, H., 1951. The structure of proteins: Two hydrogen-bonded helical configurations of the polypeptide chain. Proceedings of the National Academy of Sciences, 37(4), pp.205–11.
  • Pauling, L. and Corey, R., 1951. Configurations of polypeptide chains with favored orientations around single bonds: Two new pleated sheets. Proceedings of the National Academy of Sciences, 37(11), pp.729–40.
  • Soyfer, V., 2001. The consequences of political dictatorship for Russian science. Nature Reviews Genetics, 2(9), pp.723–9.
  • Avery, O., MacLeod, C., and McCarty, M., 1944. Studies on the chemical nature of the substance inducing transformation of pneumococcal types. The Journal of Experimental Medicine, 79(2), pp.137–58.
  • Hershey, A. and Chase, M., 1952. Independent functions of viral protein and nucleic acid in growth of bacteriophage. The Journal of General Physiology, 36(1), pp.39–56.
  • Pauling, L. and Corey, R., 1953. A proposed structure for the nucleic acids. Proceedings of the National Academy of Sciences, 39(2), pp.84–97.
  • Watson, J. and Crick, F., 1953. Molecular structure of nucleic acids: A structure for deoxyribose nucleic acid. Nature, 171(4356), pp.737–8.
  • Wilkins, M., Stokes, A., and Wilson, H., 1953. Molecular structure of nucleic acids: Molecular structure of deoxypentose nucleic acids. Nature, 171(4356), pp.738–40.
  • Franklin, R. and Gosling, R., 1953. Molecular configuration in sodium thymonucleate. Nature, 171(4356), pp.740–1.

الفصل الثالث: البروتينات: آلات الطبيعة النانوية

  • Berman, H., Battistuz, T., Bhat, T., Bluhm, W., Bourne, P., Burkhardt, K., Feng, Z., Gilliland, G., Iype, L., Jain, S., Fagan, P., Marvin, J., Padilla, D., Ravichandran, V., Schneider, B., Thanki, N., Weissig, H., Westbrook, J., and Zardecki, C., 2002. The Protein Data Bank. Acta Crystallographica Section D Biological Crystallography, 58(6), pp.899–907.
  • Koshland, D., 1995. The key–lock theory and the induced fit theory. Angewandte Chemie International Edition in English, 33(2324), pp.2375–8.
  • Michaelis, L. and Menten, M.L. 1913. Kinetik der Invertinwirkung. Biochem. Z. 49, pp.333–69.
  • Kendrew, J., Bodo, G., Dintzis, H., Parrish, R., Wyckoff, H., and Phillips, D., 1958. A three-dimensional model of the myoglobin molecule obtained by X-ray analysis. Nature, 181(4610), pp.662–6.
  • Anfinsen, C., Haber, E., Sela, M., and White, F., 1961. The kinetics of formation of native ribonuclease during oxidation of the reduced polypeptide chain. Proceedings of the National Academy of Sciences, 47(9), pp.1309–14.
  • Levinthal, C., 1969. How to fold graciously. Mossbauer Spectroscopy in Biological Systems: Proceedings of a Meeting held at Allerton House, Monticello, Illinois, 67(41), pp.22–4.
  • Foldingathome.org. 2020. Folding@Home—Fighting Disease with a World Wide Distributed Super Computer. Available at: https://foldingathome.org/ (accessed 10 March 2020).
  • Cameo3d.org. 2020. CAMEO—Continuous Automated Model Evaluation—Welcome. Available at: http://cameo3d.org/ (accessed 10 March 2020).
  • Bragg, W., 1913. The diffraction of short electromagnetic waves by a crystal. Proceedings of the Cambridge Philosophical Society, 17, pp.43–57.

الفصل الرابع: الأحماض النووية: المخطَّطات الأولية للحياة

  • Crick, F.H., 1958. On protein synthesis. In: F.K. Sanders, ed., Symposia of the Society for Experimental Biology, Number XII: The Biological Replication of Macromolecules. Cambridge: Cambridge University Press, pp.138–63.
  • Zaug, A., Been, M., and Cech, T., 1986. The Tetrahymena ribozyme acts like an RNA restriction endonuclease. Nature, 324(6096), pp.429–33.
  • Crick, F.H.C., Griffith, J.S., and Orgel, L.E., 1957. Code without commas. Proceedings of the National Academy of Sciences, 43(5), pp.416–21.
  • Nirenberg, M. and Matthaei, J., 1961. The dependence of cell-free protein synthesis in E. coli upon naturally occurring or synthetic polyribonucleotides. Proceedings of the National Academy of Sciences, 47(10), pp.1588–602.

الفصل الخامس: إمداد الخلايا بالطاقة: عِلم الطاقة الحيوية

  • Krebs, H. and Johnson, W., 1937. Metabolism of ketonic acids in animal tissues. Biochemical Journal, 31(4), pp.645–60.
  • Mitchell, P., 1961. Coupling of phosphorylation to electron and hydrogen transfer by a chemi-osmotic type of mechanism. Nature, 191(4784), pp.144–8.

الفصل السادس: تصنيع الدي إن إيه وصيانته

  • Meselson, M. and Stahl, F., 1958. The replication of DNA in Escherichia coli. Proceedings of the National Academy of Sciences, 44(7), pp.671–82.
  • Sanger, F., Nicklen, S., and Coulson, A., 1977. DNA sequencing with chain-terminating inhibitors. Proceedings of the National Academy of Sciences, 74(12), pp.5463–7.
  • Wade, N., 1998. Scientist at Work: Kary Mullis; after the ‘Eureka,’ a Nobelist Drops Out. Nytimes.com. Available at: https://www.nytimes.com/1998/09/15/science/scientist-at-work-kary-mullisafter-the-eureka-a-nobelist-drops-out.html (accessed 10 March 2020).
  • NobelPrize.org. 2020. The Nobel Prize in Chemistry 1993. Available at: https://www.nobelprize.org/prizes/chemistry/1993/mullis/lecture (accessed 10 March 2020).
  • Kleppe, K., Ohtsuka, E., Kleppe, R., Molineux, I., and Khorana, H., 1971. Studies on polynucleotides. Journal of Molecular Biology, 56(2), pp.341–61.
  • Barinaga, M., 1991. Biotech nightmare: Does Cetus own PCR? Science, 251(4995), pp.739–40.

الفصل السابع: تتبُّع الكيمياء الحيوية داخل الخلية

  • Neher, E. and Sakmann, B., 1976. Single-channel currents recorded from membrane of denervated frog muscle fibres. Nature, 260(5554), pp.799–802.
  • Chalfie, M., Tu, Y., Euskirchen, G., Ward, W.W., and Prasher, D.C., 1994. Green fluorescent protein as a marker for gene expression. Science, 263(5148), pp.802–5.
  • Abbe, E., 1873. Beiträge zur Theorie des Mikroskops und der mikroskopischen Wahrnehmung. Archiv für Mikroskopische Anatomie, 9(1), pp.413–68.
  • Hall, C., 1956. Method for the observation of macromolecules with the electron microscope illustrated with micrographs of DNA. The Journal of Biophysical and Biochemical Cytology, 2(5), pp.625–8.
  • Betzig, E., Patterson, G., Sougrat, R., Lindwasser, O., Olenych, S., Bonifacino, J., Davidson, M., Lippincott-Schwartz, J., and Hess, H., 2006. Imaging intracellular fluorescent proteins at nanometer resolution. Science, 313(5793), pp.1642–5.
  • Loose, M. and Mitchison, T., 2013. The bacterial cell division proteins FtsA and FtsZ self-organize into dynamic cytoskeletal patterns. Nature Cell Biology, 16(1), pp.38–46.
  • Belyy, V., Schlager, M., Foster, H., Reimer, A., Carter, A., and Yildiz, A., 2016. The mammalian dynein–dynactin complex is a strong opponent to kinesin in a tug-of-war competition. Nature Cell Biology, 18(9), pp.1018–24.
  • Roberts, A., Goodman, B., and Reck-Peterson, S., 2014. Reconstitution of dynein transport to the microtubule plus end by kinesin. eLife, 3.
  • Svoboda, K., Schmidt, C., Schnapp, B., and Block, S., 1993. Direct observation of kinesin stepping by optical trapping interferometry. Nature, 365(6448), pp.721–7.
  • Blehm, B., Schroer, T., Trybus, K., Chemla, Y. and Selvin, P., 2013. In Vivo Optical Trapping Indicates Kinesin’s Stall Force Is Reduced by Dynein during Intracellular Transport. Proceedings of the National Academy of Science, 110(9), pp.3381–6.

الفصل الثامن: التكنولوجيا الحيوية وعلم الأحياء التخليقي

  • Royalsociety.org. n.d. Synthetic Biology/Royal Society. Available at: https://royalsociety.org/topics-policy/projects/synthetic-biology/ (accessed 10 March 2020).
  • Gibson, D., Glass, J., Lartigue, C., Noskov, V., Chuang, R., Algire, M., Benders, G., Montague, M., Ma, L., Moodie, M., Merryman, C., Vashee, S., Krishnakumar, R., Assad-Garcia, N., Andrews-Pfannkoch, C., Denisova, E., Young, L., Qi, Z., Segall-Shapiro, T., Calvey, C., Parmar, P., Hutchison, C., Smith, H., and Venter, J., 2010. Creation of a bacterial cell controlled by a chemically synthesized genome. Science, 329(5987), pp.52–6.
  • Hutchison, C., Chuang, R., Noskov, V., Assad-Garcia, N., Deerinck, T., Ellisman, M., Gill, J., Kannan, K., Karas, B., Ma, L., Pelletier, J., Qi, Z., Richter, R., Strychalski, E., Sun, L., Suzuki, Y., Tsvetanova, B., Wise, K., Smith, H., Glass, J., Merryman, C., Gibson, D., and Venter, J., 2016. Design and synthesis of a minimal bacterial genome. Science, 351(6280), pp.aad6253.
  • Gleizer, S., Ben-Nissan, R., Bar-On, Y., Antonovsky, N., Noor, E., Zohar, Y., Jona, G., Krieger, E., Shamshoum, M., Bar-Even, A., and Milo, R., 2019. Conversion of Escherichia coli to generate all biomass carbon from CO2. Cell, 179(6), pp.1255–63.e12.
  • Ishino, Y., Shinagawa, H., Makino, K., Amemura, M., and Nakata, A., 1987. Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product. Journal of Bacteriology, 169(12), pp.5429–33.
  • Jinek, M., Chylinski, K., Fonfara, I., Hauer, M., Doudna, J.A., and Charpentier, E. 2012. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337(6096), pp.816–21.
  • Cyranoski, D., 2019. The CRISPR-baby scandal: What’s next for human gene-editing. Nature, 566(7745), pp.440–2.
  • Cyranoski, D., 2020. What CRISPR-baby prison sentences mean for research. Nature, 577(7789), pp.154–5.
  • Cello, J., 2002. Chemical synthesis of poliovirus cDNA: Generation of infectious virus in the absence of natural template. Science, 297(5583), pp.1016–18.
  • Pollack, A., 2002. Traces of Terror: The Science. Scientists Create a Live Polio Virus. Nytimes.com. Available at: https://www.nytimes.com/2002/07/12/us/traces-of-terror-the-science-scientists-createa-live-polio-virus.html (accessed 10 March 2020).
  • Herfst, S., Schrauwen, E., Linster, M., Chutinimitkul, S., de Wit, E., Munster, V., Sorrell, E., Bestebroer, T., Burke, D., Smith, D., Rimmelzwaan, G., Osterhaus, A., and Fouchier, R., 2012. Airborne transmission of influenza A/H5N1 virus between ferrets. Science, 336(6088), pp.1534–41.
  • Randerson, J., 2006. Did anyone order smallpox? The Guardian. Available at: https://www.theguardian.com/science/2006/jun/23/weaponstechnology.guardianweekly (accessed 10 March 2020).

جميع الحقوق محفوظة لمؤسسة هنداوي © ٢٠٢٤