المراجع

الفصل الأول: فوق قوس قزح

(1)
Dvorak, J. 2017. Mask of the Sun: The Science, History and Forgotten Lore of Eclipses. Pegasus Books Ltd, Cambridge, UK.
(3)
Brown, E. W. 1925. The Eclipse of January 24, 1925, Science 61 (1566): 10–12.
(4)
Claridge, G. 1937. Coronium. Journal of the Royal Astronomical Society of Canada 31 (8): 337–3446.
(5)
Nordgren, T. 2016. Sun Moon Earth: The History of Solar Eclipses from Omens of Doom to Einstein and Exoplanets. Basic Books, New York, US.
(7)
Marchant, J. 2009. Decoding the Heavens: Solving the Mystery of the World’s First Computer. Windmill Books, London, UK.
(8)
Halley, E. 17145. Observations of the late total eclipse … Philosophical Transactions of the Royal Society 29 (343): 245–262.
(9)
Brown, E. W. 1926. Discussion of Observations of the Moon at and Near the Eclipse of 1925 January 24. Astronomical Journal, 37 (866): 9–19.
(10)
The New York Times, vol. LXXIV, no. 24, 473, Sunday, 25 January 1925.
(11)
www.nasa.gov/feature/goddard/2017/chasing-the-total-solar-eclipse- from-nasa-s-wb-57f-jets.
(12)
Klimchuk, J. A. 2006. On Solving the Coronal Heating Problem. Solar Physics, 234 (1): 41–77.
(13)
G Caspi, A. et al. 2020. A New Facility for Airborne Solar Astronomy: NASA’s WB-57 at the 2017 Total Solar Eclipse.
The Astrophysical Journal, 895 (2): id.131.
(14)
Gleick, J. 2004. Isaac Newton. Harper Perennial.
(15)
Herschel, W. 1800. Experiments on the Refrangibility of the Invisible Rays of the Sun. Philosophical Transactions of the Royal Society of London 90: 284–292.
(16)
Einstein, A. 1905. On a Heuristic Point of View about the Creation and Conversion of Light. Annalen der Physik 322 (6): 132–148.
(17)
Gracheva, E. et al. 2010. Molecular Basis of Infrared Detection by Snakes. Nature 464: 1006–1011.
(18)
Hogg, C. 2011. Arctic Reindeer Extend their Visual Range into the Ultraviolet. Journal of Experimental Biology 214: 2014–2019.
(19)
Lockyer, N. 1869. Spectroscopic Observations of the Sun. No. II. Philosophical Transactions of the Royal Society of London 159: 425–444.
(20)
www.nasa.gov/content/goddard/parker-solar-probe-humanity-s-first- visit-to-a-star.
(21)
Sobel, D. 1996. Longitude. Fourth Estate, London, UK.
(22)
Rømer, O. 1676. Démonstration touchant le mouvement de la lumière trouvé par M. Roemer de l’Académie des sciences. Journal des sçavans: 233–236.
(23)
Rømer, O. 1676. Démonstration Touchant le Mouvement de la Lumière Trouvé par M. Roemer de l’Académie des Sciences. Journal des sçavans: 233–236.
(24)
Rømer, O. 1677. A Demonstration Concerning the Motion of Light, Communicated from Paris, in the Journal des Scavans, and Here Made English. Philosophical Transactions of the Royal Society of London: 893–894.
(25)
Gamow, G. 1967. A Star Called the Sun. Pelican, London, UK.
(26)
Woolf, V., Olivier Bell, A. 1990. A Moment’s Liberty: Shorter Diary of Virginia Woolf. Chatto & Windus.
(27)
Private Communication with Royal Society Librarian Keith Moore.
(28)
Green, L. 2017. 15 Million Degrees. Penguin, London, UK.

الفصل الثاني: أين تقع نجوم الجمهرة الثالثة؟

(2)
Kahneman, D. et al. 1991. Anomalies: The Endowment Effect, Loss Aversion, and Status Quo Bias. Journal of Economic Perspectives, vol. 5, no. 1: 193–206.
(3)
Davis, W. 2009. The Wayfinders: Why Ancient Wisdom Matters in the Modern World. House of Anansi Press Ltd, Canada.
(4)
Dempsey, F. 2009. Aboriginal Sky Lore of the Constellation Orion in North America. Journal of the Royal Astronomical Society of Canada, vol. 103, no. 2: 65.
(5)
Sobel, D. 2017. The Glass Universe. Harper Collins Publishers, New York, US.
(6)
Haramundanis, K. 1996. Cecilia Payne-Gaposchkin: An Autobiography and Other Recollections. Cambridge University Press, Cambridge, UK.
(7)
Payne, C. 1924. On the Spectra and Temperatures of the B Stars. Nature, vol. 113, 2848: 783–784.
(8)
Payne, C. 1925. Stellar Atmospheres. PhD Thesis, Radcliffe College.
(9)
Payne, C. The Dyer’s Hand. Privately Printed Autobiography.
(10)
Baade, W. 1944. The Resolution of Messier 32, NGC 205, and the Central Region of the Andromeda Nebula. Astrophysical Journal, vol. 100: 137.
(11)
Baade, W. 1944. NGC 147 and NGC 185, Two New Members of the Local Group of Galaxies. Astrophysical Journal, vol. 100: 147.
(12)
Russell, H. 1948. On the Distribution of Absolute Magnitude in Populations I and II. Publications of the Astronomical Society of the Pacific, vol. 60, no. 354: 202–204.
(13)
Bond, H. 1981. Where is Population III? Astrophysical Journal, v 248: 606–611.

الفصل الثالث: الانفجار الصغير

(1)
Watanabe, S. et al. 1995. Pigeons’ Discrimination of Paintings by Monet and Picasso. Journal of the Experimental Analysis of Behavior, vol. 63: 165–174.
(2)
Scarf, D. et al. 2016. Orthographic Processing in Pigeons (Columba Livia). Proceedings of the National Academy of Sciences Sep 2016, 201607870.
(3)
Scarf, D. et al. 2011. Pigeons on Par with Primates in Numerical Competence. Science334, (6063): 1664.
(4)
Levenson, R. et al. 2015. Pigeons (Columba Livia) as Trainable Observers of Pathology and Radiology Breast Cancer Images. PLoS ONE 10(11): e0141357.
(5)
Armando, the ‘Lewis Hamilton of Pigeons’ Sells for Record €1.25m. March 2019. www.bbc.co.uk/news/world-europe-47610896.
(6)
Blechman, A. 2017. Pigeons: The Fascinating Saga of the World’s Most Revered and Reviled. Grove Press, New York, US.
(7)
Scarf, D. et al. 2011. Pigeons on par with primates in numerical competence. Science 334, (6063): 1664.
(8)
For Heaven's Sake Stop It. May 2010. www.letterso.com/2010/05/for-heavens-sake-stop-it.html.
(10)
The Pigeon, the Antenna and Me: Robert Wilson. October 2015. www.scientificamerican.com/video/the-pigeon-the-antenna-and-me-robert-wilson.
(11)
Doyle, A. 2015. The Sign of Four. Penguin English Library, London, UK.
(12)
Chown, M. 1993. Afterglow of Creation. Arrow Books, London, UK.
(13)
The pigeon, the antenna and me: Robert Wilson. October 2015. www.scientificamerican.com/video/the-pigeon-the-antennaand-me-robert-wilson.
(14)
The Big Bang’s Echo. NPR News. May 2005. www.npr.org/templates/transcript/transcript.php?storyId=4655517.
(15)
What Is a Cosmological Constant? https://wmap.gsfc.nasa.gov/universe/uni_accel.html.
(16)
Van der Marel, R. et al. 2012. The M31 Velocity Vector. III. Future Milky Way M31–M33 Orbital Evolution, Merging, and Fate of the Sun. The Astrophysical Journal 753 (1).
(17)
Hubble, E. 1929. A Relation between Distance and Radial Velocity among Extra-Galactic Nebulae. Proceedings of the National Academy of Sciences of the United States of America, vol. 15, issue 3, 168–173.
(18)
Lemaître, A. G. 1931. A Homogeneous Universe of Constant Mass and Increasing Radius Accounting for the Radial Velocity of Extra-Galactic Nebulæ. Monthly Notices of the Royal Astronomical Society, vol. 91: 483–490.
(20)
Chown, M. 1993. Afterglow of Creation. Arrow Books, London, UK.
(21)
Dicke, R. et al. 1965. Cosmic Black-Body Radiation. The Astrophysical Journal, vol. 142: 414–419.
(22)
Penzias, A. & Wilson, R. 1965. A Measurement of Excess Antenna Temperature at 4080 Mc/s. The Astrophysical Journal, vol. 142: 419–421.
(23)
‘The Nobel Prize in Physics 1978’. www.nobelprize.org/prizes/physics/1978/summary.
(24)
‘The Nobel Prize in Physics 2019’. www.nobelprize.org/prizes/physics/2019/summary.
(25)
McAllister, A. 2016. A Year Full of Stories: 52 Folk Tales and Legends from around the World. Frances Lincoln Children’s Books, London, UK.
(26)
Weinberg, S. 1993. The First Three Minutes: A Modern View of the Origin of the Universe. Basic Books, New York, US.

الفصل الرابع: سحابة غاز محظوظة

(1)
Okinawa’s Annual Tug-of-War Requires Lots of Workers, and Rope. October 2006. www.stripes.com/news/okinawa-s-annual-tug-of-war-requires-lots-of-workers-rope-1.54989.
(2)
Rope Breaks for the First Time at Annual Great Tug-of-War. October 2019. http://english.ryukyushimpo.jp/2019/10/18/31190.
(3)
Adams, D. 2016. The Hitchhiker’s Guide to the Galaxy. Pan, London, UK.
(4)
The Apollo 15 Hammer-Feather Drop. July 2018. https://moon.nasa.gov/resources/331/the-apollo-15-hammer-feather-drop.
(5)
Two Lose Arms in Taiwan Tug-of-War. 25 October 1997. The Nation.
(6)
Rope breaks for the first time at annual great tug-of-war. October 2019. http://english.ryukyushimpo.jp/2019/10/18/31190.
(7)
Caroll, B. & Ostlie, D. 2017. An Introduction to Modern Astrophysics. Cambridge University Press, Cambridge, UK.
(8)
Grossman, D., Ganz, C. & Russell, P. 2017. Zeppelin Hindenburg: An Illustrated History of LZ-129. The History Press, Cheltenham, UK.
(9)
Hydrogen and Helium in Rigid Airship Operations. www.airships.net/helium-hydrogen-airships.
(10)
Green, L. 2017. 15 Million Degrees. Penguin, London, UK.
(11)
Charles ‘Don’ Albury, 84. Time Magazine, 25 July 2005.
(12)
Phillips, A. 2010. The Physics of Stars. Wiley.
(13)
Green, L. 2017. 15 Million Degrees. Penguin, London, UK.
(14)
Caroll, B. & Ostlie, D. 2017. An Introduction to Modern Astrophysics. Cambridge University Press, Cambridge, UK.
(16)
www.iter.org.
(17)
Mužić, K. et al. 2017. The Low-Mass Content of the Massive Young Star Cluster RCW 38. Monthly Notices of the Royal Astronomical Society 471 (3): 3699–3712.

الفصل الخامس: العصور المظلمة

(3)
Baldry, I. et al. 2002. The 2dF Galaxy Redshift Survey: Constraints on Cosmic Star Formation History from the Cosmic Spectrum. The Astrophysical Journal 569 (2).
(4)
Falchi, F. et al. 2016. The New World Atlas of Artificial Night Sky Brightness. Science Advances 2 (6).
(7)
Bowman, J. et al. 2018. An Absorption Profile Centred at 78 megahertz in the Sky-Averaged Spectrum. Nature 555: 67–70.
(8)
Barkana, R. 2018. Possible Interaction between Baryons and Dark-Matter Particles Revealed by the First Stars. Nature 555: 71–74.
(9)
Vogelsberger, M. et al. 2014. Introducing the Illustris Project: Simulating the Coevolution of Dark and Visible Matter in the Universe. Monthly Notices of the Royal Astronomical Society, vol. 444, 2: 1518–1547.
(10)
This Is How Much Dark Matter Passes through Your Body Every Second. July 2018. www.forbes.com/sites/startswithabang/2018/07/03/this-is-how-much-dark-matter-passes-through-your-body-every-second/#7cb9baaf7ccd.
(12)
Sidhu, J. S., Scherrer, R. J. & Starkman, G. Death and Serious Injury from Dark Matter. astro-ph/arXiv: 1907.06674.
(13)
Bernabei, R. et al. 2018. First Model Independent Results from DAMA/LIBRA-Phase 2. Nuclear Physics and Atomic Energy, vol. 19, issue 4: 307–325.
(14)
Muñoz, J. B. & Loeb, A. 2018. A Small Amount of Mini-Charged Dark Matter Could Cool the Baryons in the Early Universe. Nature 557: 684–686.
(15)
Ewall-Wice, A. et al. 2018. Modeling the Radio Background from the First Black Holes at Cosmic Dawn: Implications for the 21cm Absorption Amplitude. The Astrophysical Journal 868: 63.
(16)
Fixsen, D. J. et al. 2011. ARCADE 2 Measurement of the Absolute Sky Brightness at 3-90 GHz. The Astrophysical Journal, vol. 734: 11.
(17)
Dowell, J. & Taylor, G. B. 2018. The Radio Background below 100 MHz. The Astrophysical Journal Letters, vol. 858: 6.

الفصل السادس: تشظي النجوم

(1)
www.epa.gov/greatlakes/facts-and-figures-about-great-lakes.
(2)
Toledo Water Clears, but Outlook Is Cloudy. August 2014. The Wall Street Journal. www.wsj.com/articles/toledo-mayor-orders-more-drinking-water-tests-1407141074.
(3)
Kopp et al. 2005. The Paleoproterozoic Snowball Earth: A Climate Disaster Triggered by the Evolution of Oxygenic Photosynthesis. Proceedings of the National Academy of Sciences of the United States of America 102 (32): 11131–11136.
(4)
Schirrmeister, B. et al. 2013. Evolution of Multicellularity Coincided with Increased Diversification of Cyanobacteria and the Great Oxidation Event. PNAS January 29, 110 (5): 1791–1796.
(5)
Schirrmeister, B. et al. 2013. Evolution of Multicellularity Coincided with Increased Diversification of Cyanobacteria and the Great Oxidation Event. PNAS January 29, 110 (5): 1791–1796.
(6)
Jeans, J. 1928. Astronomy and Cosmogony. Cambridge University Press, Cambridge, UK.
(7)
Phillips, A. C. 2010. The Physics of Stars. Wiley.
(8)
Whale Explodes in Taiwanese City. Jan 2004. http://news.bbc.co.uk/1/hi/sci/tech/3437455.stm.
(9)
Tajika E. & Harada M. 2019. Great Oxidation Event and Snowball Earth. In: Yamagishi A., Kakegawa T. & Usui T. (eds), Astrobiology. Springer, Singapore.
(10)
Walker, G. 2014. Snowball Earth. Bloomsbury, London, UK.
(11)
Clark, P. 2011. The Formation and Fragmentation of Disks around Primordial Protostars. Science, vol. 331, issue 6020: 1040–.
(12)
Loeb, A. 2010. How Did the First Stars and Galaxies Form? Princeton University Press, New Jersey, US.
(13)
Susa, H. 2019. Merge or Survive: Number of Population III Stars per Minihalo. The Astrophysical Journal, vol. 877, issue 2, article id. 99: 10 pp.
(14)
Hosokawa, T. et al. 2016. Formation of Massive Primordial Stars: Intermittent UV Feedback with Episodic Mass Accretion. The Astrophysical Journal, vol. 824, issue 2, article id. 119: 26 pp.
(15)
Walker, G. 2014. Snowball Earth. Bloomsbury, London, UK.
(16)
Greif, T. et al. 2012. Formation and Evolution of Primordial Protostellar Systems. Monthly Notices of the Royal Astronomical Society, vol. 424, issue 1: 399–415.
(17)
Stacy, A. & Bromm, V. 2013. Constraining the Statistics of Population III Binaries. Monthly Notices of the Royal Astronomical Society, vol. 433, issue 2: 1094–1107.
(18)
Caroll, B. & Ostlie, D. 2017. An Introduction to Modern Astrophysics. Cambridge University Press, Cambridge, UK.
(19)
Wise, J. et al. 2012. The Birth of a Galaxy: Primordial Metal Enrichment and Stellar Populations. The Astrophysical Journal, vol. 745, issue 1, article id. 50: 10 pp.

الفصل السابع: علم الآثار النجمي

(2)
Growth Reference Data for 5–19 Years. www.who.int/growthref.
(3)
Evolution of Adult Height Over Time. www.ncdrisc.org/datadownloads-height.html.
(4)
Habicht, M. E. et al. 2015. Body Height of Mummified Pharaohs Supports Historical Suggestions of Sibling Marriages. American Journal of Physical Anthropology 157, 3.
(5)
Stacy, A. & Bromm, V. 2013. Constraining the Statistics of Population III Binaries. Monthly Notices of the Royal Astronomical Society, vol. 433, issue 2: 1094–1107.
(6)
Stacy, A. et al. 2016. Building up the Population III Initial Mass Function from Cosmological Initial Conditions. Monthly Notices of the Royal Astronomical Society, vol. 462, issue 2: 1307–1328.
(7)
Asplund, M. et al. 2009. The Chemical Composition of the Sun. Annual Review of Astronomy & Astrophysics, vol. 47, issue 1: 481–522.
(8)
Frebel, A. 2015. Searching for the Oldest Stars: Ancient Relics from the Early Universe. Princeton University Press, New Jersey, US.
(9)
Frebel, A. 2018. From Nuclei to the Cosmos: Tracing Heavy-Element Production with the Oldest Stars. Annual Review of Nuclear and Particle Science, vol. 68, issue 1: 237–269.
(10)
Frebel, A. 2018. From nuclei to the cosmos: tracing heavyelement production with the oldest stars. Annual Review of Nuclear and Particle Science, vol. 68, issue 1: 237–269.
(11)
Chamberlain, J. & Aller, L. H. 1951. The Atmospheres of A-Type Subdwarfs and 95 Leonis. Astrophysical Journal, vol. 114: 52.
(12)
Roman, N. 1950. A Correlation between the Spectroscopic and Dynamical Characteristics of the Late F- and Early G-Type Stars. Astrophysical Journal, vol. 112: 554.
(13)
Baade, W. 1944. The Resolution of Messier 32, NGC 205, and the Central Region of the Andromeda Nebula. Astrophysical Journal, vol. 100: 137.
(14)
Frebel, A. & Norris, J. 2013. Metal-Poor Stars and the Chemical Enrichment of the Universe, Planets, Stars and Stellar Systems 5, by Oswalt, Terry D.; Gilmore, Gerard. Springer Science + Business Media Dordrecht, Berlin, Germany. p. 55.
(15)
Lucey, M. et al. 2019. The COMBS Survey – I. Chemical Origins of Metal-Poor Stars in the Galactic Bulge. Monthly Notices of the Royal Astronomical Society, vol. 488, issue 2: 2283–2300.
(16)
Nordlander, T. et al. 2019. The Lowest Detected Stellar Fe Abundance: the Halo Star SMSS J160540.18-144323.1. Monthly Notices of the Royal Astronomical Society: Letters, vol. 488, issue 1: L109–L113.
(17)
Keller, S. et al. 2014. A Single Low-Energy, Iron-Poor Supernova as the Source of Metals in the Star SMSS J031300.36-670839.3. Nature, vol. 506, issue 7489: 463–466.
(18)
Iben, I. 1983. Open Questions about the Formation of Heavy Elements in ‘Z = O’ Stars. Memorie della Societa Astronomica Italiana, vol. 54: 321–330.
(19)
Comelli, D. et al. 2016. The Meteoritic Origin of Tutankhamun’s Iron Dagger Blade. Meteoritics & Planetary Science 51, no. 7: 1301–1309.
(20)
Stulp, G. 2015. Does Natural Selection Favour Taller Stature among the Tallest People on Earth? Proceedings of the Royal Society B. 282, 1806.
(21)
Lawrence Hugh Aller 1913–2003, a Biographical Memoir. www.nasonline.org/publications/biographical-memoirs/memoir-pdfs/aller-lawrence.pdf.

الفصل الثامن: الالتهام المَجَري

(1)
Willman, B. & Strader, J. 2012. ‘Galaxy,’ Defined. The Astronomical Journal, vol. 144, issue 3, article id. 76L: 12 pp.
(2)
Belokurov, V. et al. 2007. Cats and Dogs, Hair and a Hero: a Quintet of New Milky Way Companions. The Astrophysical Journal, vol. 654, issue 2: 897–906.
(3)
Geha, M. et al. 2009. The Least-Luminous Galaxy: Spectroscopy of the Milky Way Satellite Segue 1. The Astrophysical Journal, vol. 692, issue 2: 1464–1475.
(4)
Simon, J. et al. 2011. A Complete Spectroscopic Survey of the Milky Way Satellite Segue 1: The Darkest Galaxy. The Astrophysical Journal, vol. 733, issue 1, article id. 46: 20 pp.
(5)
Fattahi, A. et al. 2020. A Tale of Two Populations: Surviving and Destroyed Dwarf Galaxies and the Build up of the Milky Way’s Stellar Halo. arXiv:2002.12043.
(6)
Bromm, V. & Yoshida, N. 2011. The First Galaxies. Annual Review of Astronomy and Astrophysics, vol. 49, issue 1: 373–407.
(7)
Greif, T. et al. 2008. The First Galaxies: Assembly, Cooling and the Onset of Turbulence. Monthly Notices of the Royal Astronomical Society, vol. 387, issue 3: 1021–1036.
(8)
Jeon, M. et al. 2014. Recovery from Population III Supernova Explosions and the Onset of Second-Generation Star Formation. Monthly Notices of the Royal Astronomical Society, vol. 444, issue 4: 3288–3300.
(9)
Wise, J. & Abel, T. 2008. Resolving the Formation of Protogalaxies. III. Feedback from the First Stars. The Astrophysical Journal, vol. 685, issue 1: 40–56.
(10)
Muratov, A. et al. 2013. Revisiting the First Galaxies: The Epoch of Population III Stars. The Astrophysical Journal, vol. 773, issue 1, article id. 19: 9 pp.
(11)
Gendin, N. & Kravtsov, A. 2006. Fossils of Reionization in the Local Group. The Astrophysical Journal, vol. 645, issue 2: 1054–1061.
(12)
Simon, J. et al. 2011. A complete spectroscopic survey of the Milky Way Satellite Segue 1: the darkest Galaxy. The Astrophysical Journal, vol. 733, issue 1, article id. 46: 20 pp.
(13)
Frebel, A. et al. 2014. Segue 1: An Unevolved Fossil Galaxy from the Early Universe. The Astrophysical Journal, vol. 786, issue 1, article id. 74: 19 pp.
(14)
Vargas, L. et al. 2013. The Distribution of Alpha Elements in Ultra-Faint Dwarf Galaxies, The Astrophysical Journal, vol. 767, issue 2, article id. 134: 13 pp.
(15)
Webster, D. 2016. Segue 1 – A Compressed Star Formation History before Reionization. The Astrophysical Journal, vol. 818, issue 1, article id. 80: 11 pp.
(16)
Jacobson, H. & Frebel, A., 2014. Observational Nuclear Astrophysics: Neutron-Capture Element Abundances in Old, Metalpoor Stars. Journal of Physics G: Nuclear and Particle Physics, vol. 41, issue 4, article id. 044001.
(17)
Frebel, A. et al. 2014. Segue 1: An Unevolved Fossil Galaxy from the Early Universe. The Astrophysical Journal, vol. 786, issue 1, article id. 74: 19 pp.
(18)
Frebel, A. et al. 2014. Segue 1: An Unevolved Fossil Galaxy from the Early Universe. The Astrophysical Journal, vol. 786, issue 1, article id. 74: 19 pp.
(19)
Roederer, I. 2013. Are There any Stars Lacking Neutron-Capture Elements? Evidence from Strontium and Barium. The Astronomical Journal, vol. 145, issue 1, article id. 26: 6 pp.
(20)
Magg, M. et al. 2018. Predicting the locations of possible longlived low-mass first stars: importance of satellite dwarf galaxies. Monthly Notices of the Royal Astronomical Society, vol. 473, issue 4: 5308–5323.
(21)
Simon, J. 2019. The faintest dwarf galaxies. Annual Review of Astronomy and Astrophysics, vol. 57: 375–415.
(22)
Scott, P. et al. 2010. Direct constraints on minimal supersymmetry from Fermi-LAT observations of the dwarf galaxy Segue 1. Journal of Cosmology and Astroparticle Physics, issue 01, id. 031.
(23)
MAGIC Collaboration. 2016. Limits to Dark Matter Annihilation Cross-Section from a Combined Analysis of MAGIC and Fermi-LAT Observations of Dwarf Satellite Galaxies. Journal of Cosmology and Astroparticle Physics, issue 02, article id. 039.
(24)
Ajello, M. et al. 2016. Fermi-LAT Observations of High-Energy Gamma-Ray Emission toward the Galactic Center. The Astrophysical Journal, vol. 819, issue 1, article id. 44: 30 pp.
(25)
Spekkens, K. et al. 2013. A Deep Search for Extended Radio Continuum Emission from Dwarf Spheroidal Galaxies: Implications for Particle Dark Matter. The Astrophysical Journal, vol. 773, issue 1, article id. 61: 16 pp.
(26)
Jeltema, T. & Profumo, S. 2016. Deep XMM Observations of Draco Rule out at the 99٪ Confidence Level a Dark Matter Decay Origin for the 3.5 keV Line. Monthly Notices of the Royal Astronomical Society, vol. 458, issue 4: 3592–3596.
(27)
Brandt, T. 2016. Constraints on MACHO Dark Matter from Compact Stellar Systems in Ultra-Faint Dwarf Galaxies. The Astrophysical Journal Letters, vol. 824, issue 2, article id. L31: 5 pp.
(28)
Bullock, J. & Boylan-Kolchin, M. 2017. Small-Scale Challenges to the LCDM Paradigm. Annual Review of Astronomy and Astrophysics, vol. 55, issue 1: 343–387.
(29)
Homma, D. et al. 2019. Boötes. IV. A New Milky Way Satellite Discovered in the Subaru Hyper Suprime-Cam Survey and Implications for the Missing Satellite Problem. Publications of the Astronomical Society of Japan, vol. 71, issue 5, id. 94.
(30)
Fattahi, A. et al. 2020. The Missing Dwarf Galaxies of the Local Group. Monthly Notices of the Royal Astronomical Society, vol. 493, issue 2: 2596–2605.

الفصل التاسع: الغَسَق الكَوْني

(1)
www.jwst.nasa.gov.
(2)
www.youtube.com/watch?v=bTxLAGchWnA.
(4)
Surace, M. et al. On the Detection of Supermassive Primordial Stars – II. Blue Supergiants. Monthly Notices of the Royal Astronomical Society, vol. 488, issue 3: 3995–4003.
(5)
Pawlik, A. et al. 2011. The First Galaxies: Assembly of Disks and Prospects for Direct Detection. The Astrophysical Journal, vol. 731, issue 1, article id. 54: 17 pp.
(6)
James, O. et al. 2015. Gravitational Lensing by Spinning Black Holes in Astrophysics, and in the Movie Interstellar. Classical and Quantum Gravity, vol. 32, issue 6, article id. 065001.
(8)
Event Horizon Telescope Collaboration. 2019. First M87 Event Horizon Telescope Results. I. The Shadow of the Supermassive Black Hole. The Astrophysical Journal Letters, vol. 875, issue 1, article id. L1: 17 pp.
(9)
Moriya, T. et al. 2019. Searches for Population III Pair-Instability Supernovae: Predictions for ULTIMATE-Subaru and WFIRST. Publications of the Astronomical Society of Japan, vol. 71, issue 3, id. 59.
(10)
Hartwig, T. et al. 2018. Detection Strategies for the First Supernovae with JWST. Monthly Notices of the Royal Astronomical Society, vol. 479, issue 2: 2202–2213.
(11)
Yue, B. et al. 2014. The Brief Era of Direct Collapse Black Hole Formation. Monthly Notices of the Royal Astronomical Society, vol. 440, issue 2: 1263–1273.
(12)
Natarajan, P. et al. 2017. Unveiling the First Black Holes with JWST: Multi-Wavelength Spectral Predictions. The Astrophysical Journal, vol. 838, issue 2, article id. 117: 10 pp.
(13)
Bañados, E. et al. 2018. An 800-Million-Solar-Mass Black Hole in a Significantly Neutral Universe at a Redshift of 7.5. Nature, vol. 553, issue 7689: 473–476.
(14)
Smith, B. et al. 2018. The Growth of Black Holes from Population III Remnants in the Renaissance Simulations. Monthly Notices of the Royal Astronomical Society, vol. 480, issue 3: 3762–3773.
(15)
Woods, T. et al. 2017. On the Maximum Mass of Accreting Primordial Supermassive Stars. The Astrophysical Journal Letters, vol. 842, issue 1, article id. L6: 5 pp.
(16)
www.ligo.caltech.edu.
(17)
Levin, J. 2016. Black Hole Blues and Other Songs from Outer Space, Vintage, London, UK.
(18)
Abbott, B. et al. 2016. Observation of Gravitational Waves from a Binary Black Hole Merger. Physical Review Letters, vol. 116, issue 6, id. 061102.

الفصل العاشر: عصر إعادة التأيُّن

(1)
Schaerer, D. 2002. On the Properties of Massive Population III Stars and Metal-Free Stellar Populations. Astronomy and Astrophysics, v. 382: 28–42.
(2)
Ahn, K. et al. 2012. Detecting the Rise and Fall of the First Stars by Their Impact on Cosmic Reionization. The Astrophysical Journal Letters, vol. 756, issue 1, article id. L16: 7 pp.
(3)
Mesinger, A. et al. 2013. Signatures of X-Rays in the Early Universe. Monthly Notices of the Royal Astronomical Society, vol. 431, issue 1: 621–637.
(4)
Fan, X. et al. 2001. A Survey of z>5.8 Quasars in the Sloan Digital Sky Survey. I. Discovery of Three New Quasars and the Spatial Density of Luminous Quasars at z~6. The Astronomical Journal, vol. 122, issue 6: 2833–2849.
(5)
Giallongo, E. et al. 2015. Faint AGNs at z > 4 in the CANDELS GOODS-S Field: Looking for Contributors to the Reionization of the Universe. Astronomy & Astrophysics, vol. 578, id. A83: 14 pp.
(6)
Madau, P. & Haardt, F. 2015. Cosmic Reionization after Planck: Could Quasars Do It All? The Astrophysical Journal Letters, vol. 813, issue 1, article id. L8: 6 pp.
(7)
Stacy, A. & Bromm, V. 2013. Constraining the Statistics of Population III Binaries. Monthly Notices of the Royal Astronomical Society, vol. 433, issue 2: 1094–1107.
(8)
Xu, H. et al. 2014. Heating the Intergalactic medium by X-Rays from Population III Binaries in High-Redshift Galaxies. The Astrophysical Journal, vol. 791, issue 2, article id. 110: 17 pp.
(9)
Robertson, B. et al. 2013. New Constraints on Cosmic Reionization from the 2012 Hubble Ultra Deep Field Campaign. The Astrophysical Journal, vol. 768, issue 1, article id. 71: 17 pp.
(10)
Kaurov, A. et al. 2016. The Effects of Dark Matter Annihilation on Cosmic Reionization. The Astrophysical Journal, vol. 833, issue 2, article id. 162: 7 pp.
(11)
Liu, H. et al. 2016. Contributions to Cosmic Reionization from Dark Matter Annihilation and Decay. Physical Review D, vol. 94, issue 6, id. 063507.
(12)
Schön, S. et al. 2018. Dark Matter Annihilation in the Circumgalactic Medium at High Redshifts. Monthly Notices of the Royal Astronomical Society, vol. 474, issue 3: 3067–3079.
(13)
Bromley-Davenport, J. 2013. Space Has No Frontier: The Terrestrial Life and Times of Sir Bernard Lovell. Bene Factum Publishing, London, UK.
(14)
www.lofar.org.

الفصل الحادي عشر: المجهولات المجهولة

(1)
Lorimer, D. et al. 2007. A Bright Millisecond Radio Burst of Extragalactic Origin. Science, vol. 318, issue 5851: 777–.
(2)
Petroff, E. et al. 2019. Fast Radio Bursts. The Astronomy and Astrophysics Review, vol. 27, issue 1, article id. 4: 75 pp.
(3)
Petroff, E. et al. 2015. Identifying the Source of Perytons at the Parkes Radio Telescope. Monthly Notices of the Royal Astronomical Society, vol. 451, issue 4: 3933–3940.
(4)
www.skatelescope.org.
(5)
Hoare, M. et al. SKA and the cradle of life. Proceedings of Advancing Astrophysics with the Square Kilometre Array PoS(AASKA14)115. 9–13 June, 2014.
(6)
Pritchard, J. et al. Cosmology from EoR/Cosmic Dawn with the SKA. Proceedings of Advancing Astrophysics with the Square Kilometre Array PoS(AASKA14)012. 9–13 June, 2014.
(7)
Pritchard, J. et al. Cosmology from EoR/Cosmic Dawn with the SKA. Proceedings of Advancing Astrophysics with the Square Kilometre Array PoS(AASKA14)012. 9–13 June, 2014.
(8)
Burns, J. et al. 2019. FARSIDE: A Low Radio Frequency Interferometric Array on the Lunar Farside, Astro2020: Decadal Survey on Astronomy and Astrophysics, APC White Papers, no. 178. Bulletin of the American Astronomical Society, vol. 51, issue 7, id. 178.
(9)
Bentum, M. et al. 2020. A Roadmap Towards a Space-Based Radio Telescope for Ultra-Low Frequency Radio Astronomy. Advances in Space Research, vol. 65, issue 2: 856–867.

جميع الحقوق محفوظة لمؤسسة هنداوي © ٢٠٢٥