المراجع
الفصل الأول: فوق قوس قزح
(1)
Dvorak, J. 2017. Mask of the Sun: The
Science, History and Forgotten Lore
of Eclipses. Pegasus Books
Ltd, Cambridge,
UK.
(3)
Brown, E. W. 1925. The
Eclipse of January 24, 1925, Science 61
(1566): 10–12.
(4)
Claridge, G. 1937. Coronium.
Journal of
the Royal Astronomical Society of
Canada 31 (8):
337–3446.
(5)
Nordgren, T. 2016.
Sun Moon
Earth: The History of Solar
Eclipses from Omens of Doom to
Einstein and
Exoplanets. Basic
Books, New York,
US.
(7)
Marchant, J. 2009.
Decoding
the Heavens: Solving the Mystery
of the World’s First
Computer. Windmill
Books, London,
UK.
(8)
Halley, E. 17145.
Observations of the late total
eclipse … Philosophical Transactions of
the Royal Society 29
(343):
245–262.
(9)
Brown, E. W. 1926.
Discussion of Observations of the
Moon at and Near the Eclipse of 1925
January 24. Astronomical Journal,
37 (866):
9–19.
(10)
The New York
Times, vol. LXXIV, no.
24, 473, Sunday, 25 January
1925.
(11)
www.nasa.gov/feature/goddard/2017/chasing-the-total-solar-eclipse-
from-nasa-s-wb-57f-jets.
(12)
Klimchuk, J. A. 2006. On
Solving the Coronal Heating Problem.
Solar
Physics, 234 (1):
41–77.
(13)
G Caspi, A. et al. 2020.
A New Facility for Airborne Solar
Astronomy: NASA’s WB-57 at the 2017
Total Solar
Eclipse.
The Astrophysical Journal, 895 (2): id.131.
(14)
Gleick, J. 2004.
Isaac
Newton. Harper
Perennial.
(15)
Herschel, W. 1800.
Experiments on the Refrangibility of
the Invisible Rays of the Sun.
Philosophical Transactions of
the Royal Society of
London 90:
284–292.
(16)
Einstein, A. 1905. On a
Heuristic Point of View about the
Creation and Conversion of Light.
Annalen
der Physik 322 (6):
132–148.
(17)
Gracheva, E. et al.
2010. Molecular Basis of Infrared
Detection by Snakes. Nature
464:
1006–1011.
(18)
Hogg, C. 2011. Arctic
Reindeer Extend their Visual Range
into the Ultraviolet. Journal of
Experimental Biology
214:
2014–2019.
(19)
Lockyer, N. 1869.
Spectroscopic Observations of the
Sun. No. II. Philosophical Transactions of
the Royal Society of
London 159:
425–444.
(20)
www.nasa.gov/content/goddard/parker-solar-probe-humanity-s-first-
visit-to-a-star.
(21)
Sobel, D. 1996.
Longitude. Fourth
Estate, London,
UK.
(22)
Rømer, O.
1676. Démonstration touchant le
mouvement de la lumière trouvé
par M. Roemer de l’Académie des
sciences. Journal des sçavans:
233–236.
(23)
Rømer, O. 1676.
Démonstration Touchant le Mouvement
de la Lumière Trouvé par M. Roemer de
l’Académie des Sciences. Journal des
sçavans:
233–236.
(24)
Rømer, O. 1677. A
Demonstration Concerning the Motion
of Light, Communicated from Paris, in
the Journal des Scavans, and Here
Made English. Philosophical Transactions of
the Royal Society of
London:
893–894.
(25)
Gamow, G. 1967.
A Star
Called the Sun.
Pelican, London,
UK.
(26)
Woolf, V.,
Olivier Bell, A. 1990. A Moment’s Liberty:
Shorter Diary of Virginia
Woolf. Chatto &
Windus.
(27)
Private
Communication with Royal Society
Librarian Keith
Moore.
(28)
Green, L.
2017. 15
Million Degrees.
Penguin, London,
UK.
الفصل الثاني: أين تقع نجوم الجمهرة الثالثة؟
(2)
Kahneman, D. et al. 1991.
Anomalies: The Endowment Effect, Loss
Aversion, and Status Quo Bias. Journal of Economic
Perspectives, vol. 5, no.
1: 193–206.
(3)
Davis, W. 2009.
The
Wayfinders: Why Ancient Wisdom
Matters in the Modern
World. House of Anansi
Press Ltd,
Canada.
(4)
Dempsey, F. 2009.
Aboriginal Sky Lore of the
Constellation Orion in North America.
Journal
of the Royal Astronomical Society
of Canada, vol. 103,
no. 2: 65.
(5)
Sobel, D. 2017.
The Glass
Universe. Harper
Collins Publishers, New York,
US.
(6)
Haramundanis, K. 1996.
Cecilia
Payne-Gaposchkin: An
Autobiography
and Other
Recollections.
Cambridge University Press,
Cambridge, UK.
(7)
Payne, C. 1924. On the
Spectra and Temperatures of the B
Stars. Nature, vol. 113,
2848: 783–784.
(8)
Payne, C. 1925. Stellar
Atmospheres. PhD Thesis, Radcliffe
College.
(9)
Payne, C.
The
Dyer’s Hand. Privately
Printed
Autobiography.
(10)
Baade, W. 1944. The
Resolution of Messier 32, NGC 205,
and the Central Region of the
Andromeda Nebula. Astrophysical
Journal, vol. 100:
137.
(11)
Baade, W. 1944. NGC 147
and NGC 185, Two New Members of the
Local Group of Galaxies. Astrophysical
Journal, vol. 100:
147.
(12)
Russell, H. 1948. On the
Distribution of Absolute Magnitude in
Populations I and II. Publications of the
Astronomical Society of the
Pacific, vol. 60, no.
354: 202–204.
(13)
Bond, H. 1981. Where is
Population III? Astrophysical
Journal, v 248:
606–611.
الفصل الثالث: الانفجار الصغير
(1)
Watanabe, S. et al. 1995.
Pigeons’ Discrimination of Paintings by
Monet and Picasso. Journal of the
Experimental Analysis of
Behavior, vol. 63:
165–174.
(2)
Scarf, D. et al. 2016.
Orthographic Processing in Pigeons
(Columba
Livia). Proceedings of the
National Academy of Sciences Sep
2016,
201607870.
(3)
Scarf, D. et al. 2011.
Pigeons on Par with Primates in Numerical
Competence. Science334, (6063):
1664.
(4)
Levenson, R. et al. 2015.
Pigeons (Columba
Livia) as Trainable
Observers of Pathology and Radiology
Breast Cancer Images. PLoS ONE
10(11): e0141357.
(5)
Armando, the ‘Lewis Hamilton
of Pigeons’ Sells for Record
€1.25m. March 2019.
www.bbc.co.uk/news/world-europe-47610896.
(6)
Blechman, A. 2017. Pigeons: The
Fascinating Saga of the World’s Most
Revered and Reviled. Grove
Press, New York,
US.
(7)
Scarf, D. et al. 2011.
Pigeons on par with primates in numerical
competence. Science 334, (6063):
1664.
(8)
For Heaven's Sake Stop It.
May 2010.
www.letterso.com/2010/05/for-heavens-sake-stop-it.html.
(9)
‘Mary of Exeter’.
www.pdsa.org.uk/get-involved/dm75/the-relentless/mary-of-exeter.
(10)
The Pigeon, the Antenna
and Me: Robert Wilson. October 2015.
www.scientificamerican.com/video/the-pigeon-the-antenna-and-me-robert-wilson.
(11)
Doyle, A. 2015.
The Sign
of Four. Penguin
English Library, London,
UK.
(12)
Chown, M. 1993.
Afterglow
of Creation. Arrow
Books, London,
UK.
(13)
The pigeon, the antenna
and me: Robert Wilson. October 2015.
www.scientificamerican.com/video/the-pigeon-the-antennaand-me-robert-wilson.
(14)
The Big Bang’s
Echo. NPR
News. May 2005.
www.npr.org/templates/transcript/transcript.php?storyId=4655517.
(15)
What Is a Cosmological
Constant?
https://wmap.gsfc.nasa.gov/universe/uni_accel.html.
(16)
Van der Marel, R.
et
al. 2012. The M31
Velocity Vector. III. Future Milky
Way M31–M33 Orbital Evolution,
Merging, and Fate of the Sun.
The
Astrophysical Journal
753 (1).
(17)
Hubble, E. 1929. A
Relation between Distance and Radial
Velocity among Extra-Galactic
Nebulae. Proceedings of the National
Academy of Sciences of the United
States of America,
vol. 15, issue 3,
168–173.
(18)
Lemaître, A. G. 1931. A
Homogeneous Universe of Constant Mass
and Increasing Radius Accounting for
the Radial Velocity of Extra-Galactic
Nebulæ. Monthly Notices of
the Royal Astronomical
Society, vol. 91:
483–490.
(19)
The Steady-State
Challenge.
www.britannica.com/science/astronomy/The-steady-state-challenge.
(20)
Chown, M. 1993.
Afterglow
of Creation. Arrow
Books, London,
UK.
(21)
Dicke, R. et al.
1965. Cosmic Black-Body Radiation.
The
Astrophysical
Journal, vol. 142:
414–419.
(22)
Penzias, A. &
Wilson, R. 1965. A Measurement of
Excess Antenna Temperature at 4080
Mc/s. The
Astrophysical Journal,
vol. 142:
419–421.
(23)
‘The Nobel Prize in
Physics 1978’.
www.nobelprize.org/prizes/physics/1978/summary.
(24)
‘The Nobel Prize in
Physics 2019’.
www.nobelprize.org/prizes/physics/2019/summary.
(25)
McAllister, A. 2016.
A Year
Full of Stories: 52 Folk Tales
and Legends from around the
World. Frances Lincoln
Children’s Books, London,
UK.
(26)
Weinberg, S. 1993.
The First
Three Minutes: A Modern View of
the Origin of the
Universe. Basic Books,
New York, US.
الفصل الرابع: سحابة غاز محظوظة
(1)
Okinawa’s Annual Tug-of-War
Requires Lots of Workers, and Rope.
October 2006.
www.stripes.com/news/okinawa-s-annual-tug-of-war-requires-lots-of-workers-rope-1.54989.
(2)
Rope Breaks for the First
Time at Annual Great Tug-of-War. October
2019.
http://english.ryukyushimpo.jp/2019/10/18/31190.
(3)
Adams, D. 2016.
The
Hitchhiker’s Guide to the
Galaxy. Pan, London,
UK.
(4)
The Apollo 15
Hammer-Feather Drop.
July 2018.
https://moon.nasa.gov/resources/331/the-apollo-15-hammer-feather-drop.
(5)
Two Lose Arms in Taiwan
Tug-of-War. 25 October 1997.
The
Nation.
(6)
Rope breaks for the
first time at annual great
tug-of-war. October 2019.
http://english.ryukyushimpo.jp/2019/10/18/31190.
(7)
Caroll, B. &
Ostlie, D. 2017. An Introduction to
Modern
Astrophysics.
Cambridge University Press,
Cambridge, UK.
(8)
Grossman, D., Ganz, C.
& Russell, P. 2017. Zeppelin
Hindenburg: An Illustrated
History of LZ-129. The
History Press, Cheltenham,
UK.
(9)
Hydrogen and Helium in
Rigid Airship Operations.
www.airships.net/helium-hydrogen-airships.
(10)
Green, L. 2017.
15
Million Degrees.
Penguin, London,
UK.
(11)
Charles ‘Don’ Albury,
84. Time
Magazine, 25 July
2005.
(12)
Phillips, A. 2010.
The
Physics of Stars.
Wiley.
(13)
Green, L. 2017. 15
Million
Degrees. Penguin,
London, UK.
(14)
Caroll, B. &
Ostlie, D. 2017. An Introduction to
Modern Astrophysics.
Cambridge University Press,
Cambridge, UK.
(15)
Fukushima Melted Fuel
Removal Begins 2021, End State
Unknown.
https://abcnews.go.com/International/wireStory/fukushima-melted-fuel-removal-begins-2021-end-state-67426592.
(16)
www.iter.org.
(17)
Mužić, K. et al.
2017. The Low-Mass Content of the
Massive Young Star Cluster RCW 38.
Monthly
Notices of the Royal Astronomical
Society 471 (3):
3699–3712.
الفصل الخامس: العصور المظلمة
(3)
Baldry, I. et al. 2002.
The 2dF Galaxy Redshift Survey:
Constraints on Cosmic Star Formation
History from the Cosmic Spectrum.
The
Astrophysical Journal 569
(2).
(4)
Falchi, F. et al.
2016. The New World Atlas of
Artificial Night Sky Brightness.
Science
Advances 2
(6).
(7)
Bowman, J. et al.
2018. An Absorption Profile Centred
at 78 megahertz in the Sky-Averaged
Spectrum. Nature 555:
67–70.
(8)
Barkana, R. 2018.
Possible Interaction between Baryons
and Dark-Matter Particles Revealed by
the First Stars. Nature
555: 71–74.
(9)
Vogelsberger, M.
et
al. 2014. Introducing
the Illustris Project: Simulating the
Coevolution of Dark and Visible
Matter in the Universe. Monthly Notices of
the Royal Astronomical
Society, vol. 444, 2:
1518–1547.
(10)
This Is How Much Dark
Matter Passes through Your Body Every
Second. July 2018.
www.forbes.com/sites/startswithabang/2018/07/03/this-is-how-much-dark-matter-passes-through-your-body-every-second/#7cb9baaf7ccd.
(12)
Sidhu, J. S., Scherrer,
R. J. & Starkman, G. Death and
Serious Injury from Dark Matter.
astro-ph/arXiv:
1907.06674.
(13)
Bernabei, R. et al.
2018. First Model Independent Results
from DAMA/LIBRA-Phase 2. Nuclear Physics and
Atomic Energy, vol.
19, issue 4:
307–325.
(14)
Muñoz, J. B. &
Loeb, A. 2018. A Small Amount of
Mini-Charged Dark Matter Could Cool
the Baryons in the Early Universe.
Nature 557:
684–686.
(15)
Ewall-Wice, A. et al.
2018. Modeling the Radio Background
from the First Black Holes at Cosmic
Dawn: Implications for the 21cm
Absorption Amplitude. The Astrophysical
Journal 868:
63.
(16)
Fixsen, D. J. et al.
2011. ARCADE 2 Measurement of the
Absolute Sky Brightness at 3-90 GHz.
The
Astrophysical Journal,
vol. 734: 11.
(17)
Dowell, J. &
Taylor, G. B. 2018. The Radio
Background below 100 MHz. The Astrophysical
Journal Letters, vol.
858: 6.
الفصل السادس: تشظي النجوم
(1)
www.epa.gov/greatlakes/facts-and-figures-about-great-lakes.
(2)
Toledo Water Clears, but
Outlook Is Cloudy. August 2014. The Wall Street
Journal.
www.wsj.com/articles/toledo-mayor-orders-more-drinking-water-tests-1407141074.
(3)
Kopp et al.
2005. The Paleoproterozoic Snowball
Earth: A Climate Disaster Triggered
by the Evolution of Oxygenic
Photosynthesis. Proceedings of the
National Academy of Sciences of
the United States of
America 102 (32):
11131–11136.
(4)
Schirrmeister, B.
et
al. 2013. Evolution of
Multicellularity Coincided with
Increased Diversification of
Cyanobacteria and the Great Oxidation
Event. PNAS January 29, 110
(5):
1791–1796.
(5)
Schirrmeister, B.
et
al. 2013. Evolution of
Multicellularity Coincided with
Increased Diversification of
Cyanobacteria and the Great Oxidation
Event. PNAS January 29, 110
(5):
1791–1796.
(6)
Jeans, J. 1928.
Astronomy
and Cosmogony.
Cambridge University Press,
Cambridge, UK.
(7)
Phillips, A. C. 2010.
The
Physics of Stars.
Wiley.
(8)
Whale Explodes in
Taiwanese City. Jan 2004.
http://news.bbc.co.uk/1/hi/sci/tech/3437455.stm.
(9)
Tajika E. &
Harada M. 2019. Great Oxidation Event
and Snowball Earth. In: Yamagishi A.,
Kakegawa T. & Usui T. (eds),
Astrobiology.
Springer,
Singapore.
(10)
Walker, G. 2014.
Snowball
Earth. Bloomsbury,
London, UK.
(11)
Clark, P. 2011. The
Formation and Fragmentation of Disks
around Primordial Protostars.
Science, vol. 331,
issue 6020:
1040–.
(12)
Loeb, A. 2010. How Did the First
Stars and Galaxies
Form? Princeton
University Press, New Jersey,
US.
(13)
Susa, H. 2019. Merge or
Survive: Number of Population III
Stars per Minihalo. The Astrophysical
Journal, vol. 877,
issue 2, article id. 99: 10
pp.
(14)
Hosokawa, T. et al.
2016. Formation of Massive Primordial
Stars: Intermittent UV Feedback with
Episodic Mass Accretion. The Astrophysical
Journal, vol. 824,
issue 2, article id. 119: 26
pp.
(15)
Walker, G.
2014. Snowball Earth.
Bloomsbury, London,
UK.
(16)
Greif, T. et al.
2012. Formation and Evolution of
Primordial Protostellar Systems.
Monthly
Notices of the Royal Astronomical
Society, vol. 424,
issue 1:
399–415.
(17)
Stacy, A. &
Bromm, V. 2013. Constraining the
Statistics of Population III
Binaries. Monthly Notices of the Royal
Astronomical Society,
vol. 433, issue 2:
1094–1107.
(18)
Caroll, B. &
Ostlie, D. 2017. An Introduction to
Modern
Astrophysics.
Cambridge University Press,
Cambridge, UK.
(19)
Wise, J. et al.
2012. The Birth of a Galaxy:
Primordial Metal Enrichment and
Stellar Populations. The Astrophysical
Journal, vol. 745,
issue 1, article id. 50: 10
pp.
الفصل السابع: علم الآثار النجمي
(2)
Growth Reference Data
for 5–19 Years.
www.who.int/growthref.
(3)
Evolution of Adult
Height Over Time.
www.ncdrisc.org/datadownloads-height.html.
(4)
Habicht, M. E. et al.
2015. Body Height of Mummified
Pharaohs Supports Historical
Suggestions of Sibling Marriages.
American
Journal of Physical
Anthropology 157,
3.
(5)
Stacy, A. &
Bromm, V. 2013. Constraining the
Statistics of Population III
Binaries. Monthly Notices of the Royal
Astronomical Society,
vol. 433, issue 2:
1094–1107.
(6)
Stacy, A. et al.
2016. Building up the Population III
Initial Mass Function from
Cosmological Initial Conditions.
Monthly
Notices of the Royal Astronomical
Society, vol. 462,
issue 2:
1307–1328.
(7)
Asplund, M. et al.
2009. The Chemical Composition of the
Sun. Annual
Review of Astronomy &
Astrophysics, vol. 47,
issue 1:
481–522.
(8)
Frebel, A. 2015.
Searching
for the Oldest Stars: Ancient
Relics from the Early
Universe. Princeton
University Press, New Jersey,
US.
(9)
Frebel, A. 2018. From
Nuclei to the Cosmos: Tracing
Heavy-Element Production with the
Oldest Stars. Annual Review of Nuclear and
Particle Science, vol.
68, issue 1:
237–269.
(10)
Frebel, A.
2018. From nuclei to the cosmos:
tracing heavyelement production
with the oldest stars. Annual Review of
Nuclear and Particle
Science, vol. 68,
issue 1:
237–269.
(11)
Chamberlain, J. &
Aller, L. H. 1951. The Atmospheres of
A-Type Subdwarfs and 95 Leonis.
Astrophysical
Journal, vol. 114:
52.
(12)
Roman, N. 1950. A
Correlation between the Spectroscopic
and
Dynamical Characteristics of the Late
F- and Early G-Type Stars. Astrophysical
Journal, vol. 112:
554.
(13)
Baade, W. 1944. The
Resolution of Messier 32, NGC 205,
and the Central Region of the
Andromeda Nebula. Astrophysical
Journal, vol. 100:
137.
(14)
Frebel, A. &
Norris, J. 2013. Metal-Poor Stars
and the Chemical Enrichment of
the Universe, Planets, Stars and
Stellar Systems 5, by
Oswalt, Terry D.; Gilmore, Gerard.
Springer Science + Business Media
Dordrecht, Berlin, Germany. p.
55.
(15)
Lucey, M. et al.
2019. The COMBS Survey – I. Chemical
Origins of Metal-Poor Stars in the
Galactic Bulge. Monthly Notices of
the Royal Astronomical
Society, vol. 488,
issue 2:
2283–2300.
(16)
Nordlander, T. et al.
2019. The Lowest Detected Stellar Fe
Abundance: the Halo Star SMSS
J160540.18-144323.1. Monthly Notices of
the Royal Astronomical Society:
Letters, vol. 488,
issue 1:
L109–L113.
(17)
Keller, S. et al.
2014. A Single Low-Energy, Iron-Poor
Supernova as the Source of Metals in
the Star SMSS J031300.36-670839.3.
Nature, vol. 506,
issue 7489:
463–466.
(18)
Iben, I. 1983. Open
Questions about the Formation of
Heavy Elements in ‘Z = O’ Stars.
Memorie
della Societa Astronomica
Italiana, vol. 54:
321–330.
(19)
Comelli, D.
et
al. 2016. The
Meteoritic Origin of
Tutankhamun’s Iron Dagger Blade.
Meteoritics & Planetary
Science 51, no. 7:
1301–1309.
(20)
Stulp, G.
2015. Does Natural Selection
Favour Taller Stature among the
Tallest People on Earth?
Proceedings of the Royal Society
B. 282,
1806.
(21)
Lawrence
Hugh Aller 1913–2003, a
Biographical Memoir.
www.nasonline.org/publications/biographical-memoirs/memoir-pdfs/aller-lawrence.pdf.
الفصل الثامن: الالتهام المَجَري
(1)
Willman, B. &
Strader, J. 2012. ‘Galaxy,’ Defined.
The
Astronomical Journal, vol.
144, issue 3, article id. 76L: 12
pp.
(2)
Belokurov, V. et al. 2007.
Cats and Dogs, Hair and a Hero: a Quintet
of New Milky Way Companions. The Astrophysical
Journal, vol. 654, issue
2: 897–906.
(3)
Geha, M. et al.
2009. The Least-Luminous Galaxy:
Spectroscopy of the Milky Way
Satellite Segue 1. The Astrophysical
Journal, vol. 692,
issue 2:
1464–1475.
(4)
Simon, J. et al.
2011. A Complete Spectroscopic Survey
of the Milky Way Satellite Segue 1:
The Darkest Galaxy. The Astrophysical
Journal, vol. 733,
issue 1, article id. 46: 20
pp.
(5)
Fattahi, A. et al.
2020. A Tale of Two Populations:
Surviving and Destroyed Dwarf
Galaxies and the Build up of the
Milky Way’s Stellar Halo.
arXiv:2002.12043.
(6)
Bromm, V. &
Yoshida, N. 2011. The First Galaxies.
Annual
Review of Astronomy and
Astrophysics, vol. 49,
issue 1:
373–407.
(7)
Greif, T. et al.
2008. The First Galaxies: Assembly,
Cooling and the Onset of Turbulence.
Monthly
Notices of the Royal Astronomical
Society, vol. 387,
issue 3:
1021–1036.
(8)
Jeon, M. et al.
2014. Recovery from Population III
Supernova Explosions and the Onset of
Second-Generation Star Formation.
Monthly
Notices of the Royal Astronomical
Society, vol. 444,
issue 4:
3288–3300.
(9)
Wise, J. & Abel,
T. 2008. Resolving the Formation of
Protogalaxies. III. Feedback from the
First Stars. The Astrophysical
Journal, vol. 685,
issue 1:
40–56.
(10)
Muratov, A. et al.
2013. Revisiting the First Galaxies:
The Epoch of Population III Stars.
The
Astrophysical Journal,
vol. 773, issue 1, article id. 19: 9
pp.
(11)
Gendin, N. &
Kravtsov, A. 2006. Fossils of
Reionization in the Local Group.
The
Astrophysical Journal,
vol. 645, issue 2:
1054–1061.
(12)
Simon, J. et al.
2011. A complete spectroscopic survey
of the Milky Way Satellite Segue 1:
the darkest Galaxy. The Astrophysical
Journal, vol. 733,
issue 1, article id. 46: 20
pp.
(13)
Frebel, A. et al.
2014. Segue 1: An Unevolved Fossil
Galaxy from the Early Universe.
The
Astrophysical Journal,
vol. 786, issue 1, article id. 74: 19
pp.
(14)
Vargas, L. et al.
2013. The Distribution of Alpha
Elements in Ultra-Faint Dwarf
Galaxies, The
Astrophysical Journal,
vol. 767, issue 2, article id. 134:
13 pp.
(15)
Webster, D. 2016. Segue
1 – A Compressed Star Formation
History before Reionization.
The
Astrophysical Journal,
vol. 818, issue 1, article id. 80: 11
pp.
(16)
Jacobson, H. &
Frebel, A., 2014. Observational
Nuclear Astrophysics: Neutron-Capture
Element Abundances in Old, Metalpoor
Stars. Journal of Physics G: Nuclear
and Particle Physics,
vol. 41, issue 4, article id.
044001.
(17)
Frebel, A. et al.
2014. Segue 1: An Unevolved Fossil
Galaxy from the Early Universe.
The
Astrophysical Journal,
vol. 786, issue 1, article id. 74: 19
pp.
(18)
Frebel, A. et al.
2014. Segue 1: An Unevolved Fossil
Galaxy from the Early Universe.
The
Astrophysical Journal,
vol. 786, issue 1, article id. 74: 19
pp.
(19)
Roederer, I. 2013. Are
There any Stars Lacking
Neutron-Capture Elements? Evidence
from Strontium and Barium. The Astronomical
Journal, vol. 145,
issue 1, article id. 26: 6
pp.
(20)
Magg, M. et al.
2018. Predicting the locations of
possible longlived low-mass first
stars: importance of satellite dwarf
galaxies. Monthly Notices of the Royal
Astronomical Society,
vol. 473, issue 4:
5308–5323.
(21)
Simon, J.
2019. The faintest dwarf
galaxies. Annual Review of Astronomy and
Astrophysics, vol. 57:
375–415.
(22)
Scott, P. et al.
2010. Direct constraints on minimal
supersymmetry from Fermi-LAT
observations of the dwarf galaxy
Segue 1. Journal of Cosmology and
Astroparticle Physics,
issue 01, id.
031.
(23)
MAGIC Collaboration.
2016. Limits to Dark Matter
Annihilation Cross-Section from a
Combined Analysis of MAGIC and
Fermi-LAT Observations of Dwarf
Satellite Galaxies. Journal of
Cosmology and Astroparticle
Physics, issue 02,
article id.
039.
(24)
Ajello, M. et al.
2016. Fermi-LAT Observations of
High-Energy Gamma-Ray Emission toward
the Galactic Center. The Astrophysical
Journal, vol. 819,
issue 1, article id. 44: 30
pp.
(25)
Spekkens, K. et al.
2013. A Deep Search for Extended
Radio Continuum Emission from Dwarf
Spheroidal Galaxies: Implications for
Particle Dark Matter. The Astrophysical
Journal, vol. 773,
issue 1, article id. 61: 16
pp.
(26)
Jeltema, T. &
Profumo, S. 2016. Deep XMM
Observations of Draco Rule out at the
99٪ Confidence Level a Dark Matter
Decay Origin for the 3.5 keV Line.
Monthly
Notices of the Royal Astronomical
Society, vol. 458,
issue 4:
3592–3596.
(27)
Brandt, T. 2016.
Constraints on MACHO Dark Matter from
Compact Stellar Systems in
Ultra-Faint Dwarf Galaxies. The Astrophysical
Journal Letters, vol.
824, issue 2, article id. L31: 5
pp.
(28)
Bullock, J. &
Boylan-Kolchin, M. 2017. Small-Scale
Challenges to the LCDM Paradigm.
Annual
Review of Astronomy and
Astrophysics, vol. 55,
issue 1:
343–387.
(29)
Homma, D. et al.
2019. Boötes. IV. A New Milky Way
Satellite Discovered in the Subaru
Hyper Suprime-Cam Survey and
Implications for the Missing
Satellite Problem. Publications of the
Astronomical Society of
Japan, vol. 71, issue
5, id. 94.
(30)
Fattahi, A. et al.
2020. The Missing Dwarf Galaxies of
the Local Group. Monthly Notices of
the Royal Astronomical
Society, vol. 493,
issue 2:
2596–2605.
الفصل التاسع: الغَسَق الكَوْني
(1)
www.jwst.nasa.gov.
(2)
www.youtube.com/watch?v=bTxLAGchWnA.
(3)
www.theverge.com/2018/8/1/17627560/james-webb-space-telescope-cost-estimate-nasa-northrop-grumman.
(4)
Surace, M. et al.
On the Detection of Supermassive
Primordial Stars – II. Blue
Supergiants. Monthly Notices of the Royal
Astronomical Society,
vol. 488, issue 3:
3995–4003.
(5)
Pawlik, A. et al.
2011. The First Galaxies: Assembly of
Disks and Prospects for Direct
Detection. The Astrophysical
Journal, vol. 731,
issue 1, article id. 54: 17
pp.
(6)
James, O. et al.
2015. Gravitational Lensing by
Spinning Black Holes in Astrophysics,
and in the Movie Interstellar.
Classical and Quantum
Gravity, vol. 32,
issue 6, article id.
065001.
(8)
Event Horizon Telescope
Collaboration. 2019. First M87 Event
Horizon Telescope Results. I. The
Shadow of the Supermassive Black
Hole. The
Astrophysical Journal
Letters, vol. 875,
issue 1, article id. L1: 17
pp.
(9)
Moriya, T. et al.
2019. Searches for Population III
Pair-Instability Supernovae:
Predictions for ULTIMATE-Subaru and
WFIRST. Publications of the Astronomical
Society of Japan, vol.
71, issue 3, id.
59.
(10)
Hartwig, T. et al.
2018. Detection Strategies for the
First Supernovae with JWST. Monthly Notices of
the Royal Astronomical
Society, vol. 479,
issue 2:
2202–2213.
(11)
Yue, B. et al.
2014. The Brief Era of Direct
Collapse Black Hole Formation.
Monthly
Notices of the Royal Astronomical
Society, vol. 440,
issue 2:
1263–1273.
(12)
Natarajan, P. et al.
2017. Unveiling the First Black Holes
with JWST: Multi-Wavelength Spectral
Predictions. The Astrophysical
Journal, vol. 838,
issue 2, article id. 117: 10
pp.
(13)
Bañados, E. et al.
2018. An 800-Million-Solar-Mass Black
Hole in a Significantly Neutral
Universe at a Redshift of 7.5.
Nature, vol. 553,
issue 7689:
473–476.
(14)
Smith, B. et al.
2018. The Growth of Black Holes from
Population III Remnants in the
Renaissance Simulations. Monthly Notices of
the Royal Astronomical
Society, vol. 480,
issue 3:
3762–3773.
(15)
Woods, T. et al.
2017. On the Maximum Mass of
Accreting Primordial Supermassive
Stars. The
Astrophysical Journal
Letters, vol. 842,
issue 1, article id. L6: 5
pp.
(16)
www.ligo.caltech.edu.
(17)
Levin, J. 2016.
Black
Hole Blues and Other Songs from
Outer Space, Vintage,
London, UK.
(18)
Abbott, B. et al.
2016. Observation of Gravitational
Waves from a Binary Black Hole
Merger. Physical Review
Letters, vol. 116,
issue 6, id.
061102.
(19)
https://lisa.nasa.gov.
الفصل العاشر: عصر إعادة التأيُّن
(1)
Schaerer, D. 2002. On
the Properties of Massive Population
III Stars and Metal-Free Stellar
Populations. Astronomy and
Astrophysics, v. 382:
28–42.
(2)
Ahn, K. et al.
2012. Detecting the Rise and Fall of
the First Stars by Their Impact on
Cosmic Reionization. The Astrophysical
Journal Letters, vol.
756, issue 1, article id. L16: 7
pp.
(3)
Mesinger, A. et al.
2013. Signatures of X-Rays in the
Early Universe. Monthly Notices of
the Royal Astronomical
Society, vol. 431,
issue 1:
621–637.
(4)
Fan, X. et al.
2001. A Survey of z>5.8 Quasars in
the Sloan Digital Sky Survey. I.
Discovery of Three New Quasars and
the Spatial Density of Luminous
Quasars at z~6. The Astronomical
Journal, vol. 122,
issue 6:
2833–2849.
(5)
Giallongo, E. et al.
2015. Faint AGNs at z > 4 in the
CANDELS GOODS-S Field: Looking for
Contributors to the Reionization of
the Universe. Astronomy &
Astrophysics, vol.
578, id. A83: 14
pp.
(6)
Madau, P. &
Haardt, F. 2015. Cosmic Reionization
after Planck: Could Quasars Do It
All? The
Astrophysical Journal
Letters, vol. 813,
issue 1, article id. L8: 6
pp.
(7)
Stacy, A. &
Bromm, V. 2013. Constraining the
Statistics of Population III
Binaries. Monthly Notices of the Royal
Astronomical Society,
vol. 433, issue 2:
1094–1107.
(8)
Xu, H. et al.
2014. Heating the Intergalactic
medium by X-Rays from Population III
Binaries in High-Redshift Galaxies.
The
Astrophysical Journal,
vol. 791, issue 2, article id. 110:
17 pp.
(9)
Robertson, B. et al.
2013. New Constraints on Cosmic
Reionization from the 2012 Hubble
Ultra Deep Field Campaign. The Astrophysical
Journal, vol. 768,
issue 1, article id. 71: 17
pp.
(10)
Kaurov, A. et al.
2016. The Effects of Dark Matter
Annihilation on Cosmic Reionization.
The
Astrophysical Journal,
vol. 833, issue 2, article id. 162: 7
pp.
(11)
Liu, H. et al.
2016. Contributions to Cosmic
Reionization from Dark Matter
Annihilation and Decay. Physical Review
D, vol. 94, issue 6,
id. 063507.
(12)
Schön, S. et al.
2018. Dark Matter Annihilation in the
Circumgalactic Medium at High
Redshifts. Monthly Notices of the Royal
Astronomical Society,
vol. 474, issue 3:
3067–3079.
(13)
Bromley-Davenport, J.
2013. Space
Has No Frontier: The
Terrestrial
Life and Times of Sir Bernard
Lovell. Bene Factum
Publishing, London,
UK.
(14)
www.lofar.org.
الفصل الحادي عشر: المجهولات المجهولة
(1)
Lorimer, D. et al. 2007.
A Bright Millisecond Radio Burst of
Extragalactic Origin. Science,
vol. 318, issue 5851:
777–.
(2)
Petroff, E. et al. 2019.
Fast Radio Bursts. The Astronomy and
Astrophysics Review, vol.
27, issue 1, article id. 4: 75
pp.
(3)
Petroff, E. et al. 2015.
Identifying the Source of Perytons at the
Parkes Radio Telescope. Monthly Notices of the
Royal Astronomical
Society, vol. 451, issue 4:
3933–3940.
(4)
www.skatelescope.org.
(5)
Hoare, M. et al.
SKA and the cradle of life. Proceedings of
Advancing Astrophysics with the
Square Kilometre Array
PoS(AASKA14)115. 9–13
June, 2014.
(6)
Pritchard, J. et al.
Cosmology from EoR/Cosmic Dawn with
the SKA. Proceedings of Advancing
Astrophysics with the Square
Kilometre Array
PoS(AASKA14)012. 9–13
June, 2014.
(7)
Pritchard, J. et al.
Cosmology from EoR/Cosmic Dawn with
the SKA. Proceedings of Advancing
Astrophysics with the Square
Kilometre Array
PoS(AASKA14)012. 9–13
June, 2014.
(8)
Burns, J. et al.
2019. FARSIDE: A Low Radio Frequency
Interferometric Array on the Lunar
Farside, Astro2020: Decadal Survey on
Astronomy and Astrophysics, APC White
Papers, no. 178. Bulletin of the
American Astronomical
Society, vol. 51,
issue 7, id.
178.
(9)
Bentum, M. et al.
2020. A Roadmap Towards a Space-Based
Radio Telescope for Ultra-Low
Frequency Radio Astronomy. Advances in Space
Research, vol. 65,
issue 2:
856–867.