ملاحظات
الفصل الأول: مقدمة إلى المرونة العصبية
(1)
Rosenzweig, M. R. 1996. Aspects of the
search for neural mechanisms of memory. Annual Review of
Psychology 47:
1–32.
(2)
Costandi, M. 2006. The discovery of the
neuron. Neurophilosophy blog, 29 August,
2006.
https://neurophilosophy.wordpress.com/2006/08/29/the-discovery-of-the-neuron/.
(3)
Rosenzweig, M. R. 1996. Aspects of the
search for neural mechanisms of memory. Annual Review of
Psychology 47:
1–32.
الفصل الثاني: التعويض الحسي
(1)
Finger, S. 1994. Origins of Neuroscience: A History
of Explorations into Brain Function.
Oxford University Press.
(2)
Costandi, M. 2008. Wilder Penfield:
Neural cartographer. Neurophilosophy blog.
https://neurophilosophy.wordpress.com/2008/08/27/wilder_penfield_neural_cartographer/.
(3)
Bach-y-Rita, P., C. C. Collins, F. A.
Saunders, B. White, and L. Scadden. 1969. Visual
substitution by tactile image projection. Nature 221(5184):
963-964.
(4)
Thaler, L., S. R. Arnott, and M. A.
Goodale. 2011. Neural correlates of natural human
echolocation in early and late blind echolocation
experts. PLoS ONE
6(5): e20162. DOI:
10.1371/journal.pone.0020162.
(5)
Striem-Amit, E., and A. Amedi. 2014.
Visual cortex extrastriate body-selective area
activation in congenitally blind people “seeing” by
using sounds. Current
Biology 24(6):
687–692.
(6)
Voss, P., and R. J. Zattore. 2012.
Organization and reorganization of sensory-deprived
cortex. Current
Biology 22(5):
R168–173.
(7)
Sadato, N. 2005. How the blind “see”
braille: Lessons from functional magnetic resonance
imaging. Neuroscientist 11(6):
577–582.
(8)
Lyness, R. C., I. Alvarez, M. I.
Sereno, and M. MacSweeney. 2014. Microstructural
differences in the thalamus and thalamic radiations
in the congenitally deaf. NeuroImage 100:
347–357.
(9)
Ward, J., and T. Wright. 2014. Sensory
substitution as an artificially acquired
synaesthesia. Neuroscience
and Biobehavioral Reviews 41:
26–35.
(10)
Zembrzyckia, A., C. G. Perez-Garcia,
C.-F. Wang, S.-J. Choub, and D. D. M. O’Leary. 2014.
Postmitotic regulation of sensory area patterning in
the mammalian neocortex by Lhx2. Proceedings of the National
Academy of Sciences 112(21):
6736–6741.
الفصل الثالث: مرونة النمو
(1)
Purves, D., and J. W. Lichtman. 1985.
Principles of Neural
Development.
Sinaeur.
(2)
Hamburger, V., and R. Levi-Montalcini.
1949. Proliferation, differentiation and
degeneration in the spinal ganglia of the chick
embryo under normal and experimental conditions.
Journal of Experimental
Zoology 111(3):
457–502.
(3)
Cohen, S., R. Levi-Montalcini, and V.
Hamburger. 1954. A nerve growth stimulating factor
isolated from sarcomas 37 and 180. Proceedings of the National
Academy of Sciences USA 40(10):
1014–1018.
(4)
Aloe, L. 2004. Rita Levi-Montalcini:
The discovery of nerve growth factor and modern
neurobiology. Trends in Cell
Biology 14 (7):
395–399.
(5)
Harrington, A. W., and D. D. Ginty.
2013. Long-distance retrograde neurotrophic factor
signaling in neurons. Nature
Reviews Neuroscience 14(3):
177–187.
(6)
Yamaguchi, Y., and M. Miura. 2015.
Programmed cell death in neurodevelopment. Developmental Cell 32
(4): 478–490.
(7)
Kandel, E. R., J. H. Schwartz, and T.
M. Jessell. 1995. Essentials
of Neural Science and Behavior.
Appleton & Lange.
(8)
Webb, S. J., C. S. Monk, and C. A.
Nelson. 2001. Mechanisms of postnatal
neurobiological development: Implications for human
development. Developmental
Neuropsychology 19(2):
147–171.
(9)
Petanjek, Z., M. Judaš, G. Šimić, M. L.
Rašin, H. B. M. Uylings, P. Rakic, and I. Kostović.
2011. Extraordinary neoteny of synaptic spines in
the human prefrontal cortex. Proceedings of the National Academy of
Sciences 108(32):
13281–13286.
(10)
Selemon, L. D. 2013. A role for
synaptic pruning in the adolescent development of
executive function. Translational Psychiatry 3:
e238.
(11)
Hubel, D. H. and T. N. Wiesel 1959.
Receptive fields of single neurones in the cat’s
striate cortex. Journal of
Physiology 148(3):
574–591.
(12)
Hubel, D. H., and T. N. Wiesel. 1962.
Receptive fields, binocular interaction and
functional architecture in the cat’s visual cortex.
Journal of
Physiology 160(1):
106–154.
(13)
Hubel, D. H., and T. N. Wiesel. 1965.
Binocular interaction in striate cortex of kittens
reared with artificial squint. Journal of
Neurophysiology 28(6):
1041–1059.
(14)
Wiesel, T. N., and D. H. Hubel. 1965.
Extent of recovery from the effects of visual
deprivation in kittens. Journal of Neurophysiology 28(6):
1060–1072.
(15)
Sugiyama, S., A. A. Di Nardo, S.
Aizawa, I. Matsuo, M. Volovitch, A. Prochiantz, and
T. K. Hensch. 2008. Experience-dependent transfer of
Otx2 homeoprotein into the visual cortex activates
postnatal plasticity. Cell 134(3):
508–520.
(16)
Hensch, T. K. 2005. Critical period
mechanisms in developing visual cortex. Current Topics in Developmental
Biology 69:
215–237.
(17)
Southwell, D. G., R. C. Froemke, A.
Alvarez-Buylla, M. P. Stryker, and S. P. Gandhi.
2010. Cortical plasticity induced by inhibitory
neuron transplantation. Science 327(5969):
1145–1148.
(18)
Bardin, J. 2012. Unlocking the brain.
Nature
487(7405): 24–26.
الفصل الرابع: مرونة المشابك العصبية
(1)
Kandel, E. R., J. H. Schwartz, and T. M.
Jessell. 1995. Essentials of
Neural Science and Behavior. Appleton
& Lange.
(2)
Sheng, M., and E. Kim. 2011. The
postsynaptic organization of synapses. Cold Spring Harbor Perspectives in
Biology 3:
a005678.
(3)
Südhof, T. C. 2013. A molecular machine
for neurotransmitter release: Synaptotagmin and
beyond. Nature
Medicine 19(10):
1227–1231.
(4)
Kandel, E. R., J. H. Schwartz, and T.
M. Jessell. 1995. Essentials
of Neural Science and Behavior.
Appleton & Lange.
(5)
Sheng, M., and E. Kim. 2011. The
postsynaptic organization of synapses. Cold Spring Harbor Perspectives in
Biology 3:
a005678.
(6)
Rosenzweig, M. R. 1996. Aspects of the
search for neural mechanisms of memory. Annual Review of
Psychology 47:
1–32.
(7)
Bliss, T. V., and T. Lømo. 1973.
Long-lasting potentiation of synaptic transmission
in the dentate area of the anaesthetized rabbit
following stimulation of the perforant path.
Journal of
Physiology 232(2):
331–356.
(8)
Kandel, E. R., J. H. Schwartz, and T.
M. Jessell. 1995. Essentials
of Neural Science and Behavior.
Appleton & Lange.
(9)
Malenka, R. C. 2003. The long-term
potential of LTP. Nature
Reviews Neuroscience 4(11):
923–926.
(10)
Malinov, R., and R. C. Malenka. 2002.
AMPA receptor trafficking and synaptic plasticity.
Annual Review of
Neuroscience 25:
103–126.
(11)
Sheng, M., and E. Kim. 2011. The
postsynaptic organization of synapses. Cold Spring Harbor Perspectives in
Biology 3:
a005678.
(12)
Lüscher, C., and R. C. Malenka. 2011.
Drug-evoked synaptic plasticity in addiction: From
molecular changes to circuit remodeling. Neuron 69(4):
650–663.
(13)
Morris, R. G., E. Anderson, G. S.
Lynch, and M. Baudry. 1986. Selective impairment of
learning and blockade of long-term potentiation by
an N-methyl-D-aspartate receptor
antagonist, AP5. Nature 319(6056):
774–776.
(14)
Tonegawa, S., M. Pignatelli, D. S. Roy,
and T. J. Ryan. 2015. Memory engram storage and
retrieval. Current Opinion
in Neurobiology 35:
101–109.
(15)
Yuste, R. 2015. The discovery of
dendritic spines by Cajal. Frontiers in Neuroanatomy 9(18).
DOI:
10.3389/fnana.2015.00018.
(16)
Sala, C., and M. Segal. 2014. Dendritic
spines: The locus of structural and synaptic
plasticity. Physiological
Review 94(1):
141–188.
(17)
Lamprecht, R., and J. LeDoux. 2004.
Structural plasticity and memory. Nature Reviews
Neuroscience 5(1):
45–54.
(18)
Cichon, J., and W. B. Gan. 2006.
Branch-specific dendritic
spikes cause
persistent synaptic plasticity. Nature 520(7546):
180–185.
(19)
Nimchinsky, E. A., B. L. Sabatini, and
K. Svoboda. 2002. Structure and function of
dendritic spines. Annual
Review of Physiology 64:
313–353.
(20)
Allen, N. J. 2014. Synaptic plasticity:
Astrocytes wrap it up. Current Biology 24(15):
R697–699.
(21)
Tremblay, M.-È., B. Stevens, A. Sierra,
H. Wake, A. Bessis, and A. Nimmerjahn. 2011. The
role of microglia in the healthy brain. Journal of Neuroscience
31(45): 16064–16069.
الفصل الخامس: التخليق العصبي في البلوغ
(1)
Costandi, M. 2006. The discovery of the
neuron. Neurophilosophy blog, 29 August, 2006.
https://neurophilosophy.wordpress.com/2006/08/29/the-discovery-of-the-neuron/.
(2)
Gross, C. G. 2012. A Hole in the Head: More Tales in the History of
Neuroscience. MIT
Press.
(3)
Altman, J., and G. D. Das. 1965.
Autoradiographic and histological evidence of postnatal
hippocampal neurogenesis in rats. Journal of Comparative
Neurology 124(3):
319–336.
(4)
Kaplan, M. S. 1981. Neurogenesis in the
3-month-old rat visual cortex. Journal of Comparative Neurology 195(2):
323–338.
(5)
Costandi, M. 2012. Fantasy fix. New Scientist 213(2854):
38–41.
(6)
Ibid.
(7)
Nottebohm, F. 1981. A brain for all
seasons: Cyclical anatomical changes in song control
nuclei of the canary brain. Science 214(4527):
1368–1370.
(8)
Gould, E., and C. G. Gross. 2002.
Neurogenesis in adult mammals: Some progress and
problems. Journal of
Neuroscience 22(3):
619–623.
(9)
Reynolds, B. A., and S. Weiss. 1992.
Generation of neurons and astrocytes from isolated cells
of the adult mammalian central nervous system. Science 255(5052):
1707–1710.
(10)
Costandi, M. 2012. Fantasy fix. New Scientist 213(2854):
38–41.
(11)
Braun, S. M., and S. Jessberger. 2014.
Adult neurogenesis: Mechanisms and functional
significance. Development 141(10):
1983–1986.
(12)
Gould, E., and C. G. Gross. 2002.
Neurogenesis in adult mammals: Some progress and
problems. Journal of
Neuroscience 22(3):
619–623.
(13)
Eriksson, P. S., E. Perfilieva, T.
Björk-Eriksson, A.-M. Alborn, C. Nordborg, D. A.
Peterson, and F. H. Gage. 1998. Neurogenesis in the
adult human hippocampus. Nature
Medicine 4(11):
1313–1317.
(14)
Knoth, R., I. Singec, M. Ditter, G.
Pattazis, P. Capetian, R. P. Meyer, V. Horvat, B. Volk,
and G. Kempermann. 2010. Murine features of neurogenesis
in the human hippocampus across the lifespan from 0 to
100 years. PLoS One
5: e8809.
(15)
Sanai, N., A. D. Tramontin, A.
Quiñones-Hinojosa, N. M. Barbaro, N. Gupta, S. Kunwar,
M. T. Lawton, M. W. McDermott, A. T. Parsa, J. Manuel-
García Verdugo, M. S. Berger, and A. Alvarez-Buylla.
2004. Unique astrocyte ribbon in adult human brain
contains neural stem cells but lacks chain migration.
Nature 427(6976):
740–744.
(16)
Sanai, N., T. Nguyen, R. A. Ihrie, Z.
Mirzadeh, H.-H. Tsai, M. Wong, N. Gupta, M. S. Berger,
E. Huang, J. Manuel-García Verdugo, D. H. Rowitch, and
A. Alvarez-Buylla. 2011. Corridors of migrating neurons
in the human brain and their decline during infancy.
Nature 478(7369):
382–386.
(17)
Spalding, K. L., O. Bergmann, K. Alkass, S.
Bernard, M. Salehpour, H. B. Huttner, E. Boström, I.
Westerlund, C. Vial, B. A. Buchholz, G. Possnert, D. C.
Mash, H. Druid, and J. Frisén. 2013. Dynamics of
hippocampal neurogenesis in adult humans. Cell 153(6):
1219–1227.
(18)
Ernst, A., K. Alkass, S. Bernard, M.
Salehpour, S. Perl, J. Tisdale, H. Druid, and J. Frisén.
2014. Neurogenesis in the striatum of the adult human
brain. Cell 156(5):
1072–1083.
(19)
Hanson, N. D., M. J. Owens, and C. B.
Nemeroff. 2011. Depression, antidepressants, and
neurogenesis: A critical reappraisal. Neuropsychopharmacology
36(13): 2589–2602.
(20)
Ernst, A. and J. Frisén. 2015. Adult
neurogenesis in humans: Common and unique traits in
mammals. PLoS Biology
13(1): e1002045.
(21)
Vescovi, A. L., R. Galli, and B. A.
Reynolds. 2006. Brain tumor stem cells. Nature Reviews Cancer 6(6):
425–436.
(22)
Costandi, M. 2012. Fantasy fix. New Scientist 213(2854):
38–41.
(23)
Casarosa, S., Y. Bozzi, and L. Conti. 2014.
Neural stem cells: Ready for therapeutic applications?
Molecular and Cellular
Therapies 2: 31. DOI:
10.1186/2052-8426-2-31.
الفصل السادس: تدريب الدماغ
(1)
Owen, A. M., A. Hampshire, J. A. Grahn, R.
Stenton, S. Dajani, A. S. Burns, R. J. Howard, and C. G.
Ballard. 2010. Putting brain training to the test.
Nature 465(7299):
775–778.
(2)
Max Planck Institute for Human Development
and Stanford Center on Longevity. 2014. A Consensus on the Brain Training
Industry from the Scientific Community.
Accessed on 4 September, 2015, from
http://longevity3.stanford.edu/blog/2014/10/15/the-consensus-on-the-brain-training-industry-from-the-scientific-community/.
(3)
Federal Trade Commission. 2016. Lumosity to
pay $2 million to settle FTC deceptive
advertising charges for its “brain training” program.
Accessed on 23 February, 2016, from
https://www.ftc.gov/news-events/press-releases/2016/01/lumosity-pay-2-million-settle-ftc-deceptive-advertising-charges/.
(4)
Münte, T. F., E. Altenmüller, and L.
Jancke. 2002. The musician’s brain as a model of
neuroplasticity. Nature Reviews
Neuroscience 3(6):
473–478.
(5)
Mechelli, A., J. T. Crinion, U.
Noppeney, J. O’Doherty, J. Ashburner, R. S.
Frackowiak, and C. J. Price. 2004. Structural
plasticity in the bilingual brain. Nature 431(7010):
757.
(6)
Li, P., J. Legault, and K. A.
Litcofsky. 2014. Neuroplasticity as a function of
second language learning: Anatomical changes in the
human brain. Cortex 58:
301–24.
(7)
Costandi, M. 2014. Am I too old to
learn a new language? The
Guardian.
http://www.theguardian.com/education/2014/sep/13/am-i-too-old-to-learn-a-language/.
(8)
Schlaug, G., L. Jäncke, Y. Huang, J. F.
Staiger, and H. Steinmetz. 1995. Increased corpus
callosum size in musicians. Neuropsychologia 33(8):
1047–1055.
(9)
Elbert, T., C. Pantev, C. Wienbruch, B.
Rockstroh, and E. Taub. 1995. Increased cortical
representation of the fingers of the left hand in
string players. Science 270(5234):
305–307.
(10)
Gaser, C., and G. Schlaug. 2003. Brain
structures differ between musicians and
non-musicians. Journal of
Neuroscience 23(27):
9240–9245.
(11)
Bengtsson, S. L., Z. Nagy, S. Skare, L.
Forsman, H. Forssberg, and F. Ullén. 2005. Extensive
piano practicing has regionally specific effects on
white matter development. Nature Neuroscience 8(9):
1148–1150.
(12)
Roberts, R. E., P. G. Bain, B. I. Day,
and M. Husain. 2012. Individual differences in
expert motor coordination associated with white
matter microstructure in the cerebellum. Cerebral Cortex 23(10):
2282–2292.
(13)
Driemeyer, J., J. Boyke, C. Gaser, C.
Büchel, and A. May. 2008. Changes in gray matter
induced by learning—Revisited. PLoS ONE 3(7): e2669.
DOI:
10.1371/journal.pone.0002669.
(14)
Scholz, J., M. C. Klein, T. E. J.
Behrens, and H. Johansen-Berg. 2009. Training
induces changes in white matter architecture.
Nature
Neuroscience 12(11):
1370-1371.
(15)
Maguire, E. A., D. G. Gadian, I. S.
Johnsrude, C. D. Good, J. Ashburner, R. J. S.
Frackowiak, and C. D. Frith. 2000.
Navigation-related structural change in the
hippocampi of taxi drivers. Proceedings of the National Academy of
Sciences 97(8):
4398–4403.
(16)
Woollett, K., and E. A. Maguire. 2011.
Acquiring “the Knowledge” of London’s layout drives
structural brain changes. Current Biology 21(24):
2109–2114.
(17)
Debarnot, U., M. Sperduti, F. Di
Rienzo, and A. Guillot. 2014. Expert bodies, expert
minds: How physical and mental training shape the
brain. Frontiers in Human
Neuroscience 8(280): DOI:
10.3389/fnhum.2014.00280.
(18)
Zatorre, R. J., R. D. Fields, and H.
Johansen-Berg. 2012. Plasticity in gray and white:
Neuroimaging changes in brain structure during
learning. Nature
Neuroscience 15(4):
528–536.
(19)
Naito, E., and S. Hirose. 2014.
Efficient motor control by Neymar’s brain. Frontiers in Human
Neuroscience 8. DOI:
10.3389/fnhum.2014.00594.
الفصل السابع: إصابة الأعصاب وتلف الدماغ
(1)
Buonomano, D. V., and M. M. Merzenich.
1998. Cortical plasticity: From synapses to maps.
Annual Review of
Neuroscience 21:
149–186.
(2)
Ramachandran, V. S., and D.
Rogers-Ramachandran. 2000. Phantom limbs and neural
plasticity. Archives of
Neurology 57(3):
317–320.
(3)
Navarro, X., M. Vivó, and A.
Valero-Cabré. 2007. Neural plasticity after
peripheral nerve injury and regeneration. Progress in
Neurobiology 82(4):
163–201.
(4)
Pascual-Leone, A., A. Amedi, F. Fregni,
and L. B. Merabet. 2005. The plastic human brain
cortex. Annual Review of
Neuroscience 28:
377–401.
(5)
Schaechter, J. D., C. I. Moore, B. D.
Connell, B. R. Rosen, and R. M. Dijkhuizen. 2006.
Structural and functional plasticity in the
somatosensory cortex of chronic stroke patients.
Brain
129(10): 2722–2733.
(6)
Costandi, M. 2014. Machine recovery.
Nature
510(7506): S8-S9.
(7)
Pascual-Leone, A., A. Amedi, F. Fregni,
and L. B. Merabet. 2005. The plastic human brain
cortex. Annual Review of
Neuroscience 28:
377–401.
(8)
Ibid.
(9)
Rohan, J. G., K. A. Carhuatanta, S. M.
McInturf, M. K. Miklasevich, and R. Jankord. 2015.
Modulating hippocampal plasticity with in vivo brain
stimulation. Journal of
Neuroscience 35(37):
12824–12832.
(10)
Pilato, F., P. Profice, L. Florio, R.
Di Iorio, F. Iodice, D. Marisa, and D. L. Vincenzo.
2013. Non-invasive brain stimulation techniques may
improve language recovery in stroke patients
modulating neural plasticity. Journal of Neurology and
Translational Neuroscience 1:
1012.
(11)
Ward, N. 2011. Assessment of cortical
reorganisation for hand function after stroke.
Journal of
Physiology 589(23):
5625–5632.
(12)
Shah, P. P., J. P. Szaflarski, J.
Allendorfer, and R. H. Hamilton. 2013. Induction of
neuroplasticity and recovery in post-stroke aphasia
by non-invasive brain stimulation. Frontiers in Human
Neuroscience 7. DOI:
10.3389/fnhum.2013.00888.
(13)
Chollet, F., J. Tardy, J.-F. Albucher,
C. Thalamas, E. Berard, C. Lamy, Y. Bejot, S.
Deltour, A. Jaillard, P. Niclot, B. Guillon, T.
Moulin, P. Marque, J. Pariente, C. Arnaud, and I.
Loubinoux, (2011). Fluoxetine for motor recovery
after acute ischemic stroke (FLAME): A randomized
placebo-controlled trial. The Lancet Neurology 10(2):
123–130.
الفصل الثامن: الإدمان والألم
(1)
Koob, G. F., and N. D. Volkow. 2010.
Neurocircuitry of addiction. Neuropsychopharmacology Reviews
35(1): 217–238.
(2)
Ibid.
(3)
Lüscher, C., and R. C. Malenka. 2012.
NMDA receptor-dependent long-term potentiation and
long-term depression (LTP/LTD). Cold Spring Harbor Perspectives in
Biology 4:
a005710.
(4)
O’Brien, C. P. 2009. Neuroplasticity in
addictive disorders. Dialogues in Clinical Neuroscience
11(3): 350–353.
(5)
Dodd, M. L., K. J. Klos, J. H. Bower,
Y. E. Geda, K. A. Josephs, and J. E. Ahlskog. 2005.
Pathological gambling caused by drugs used to treat
Parkinson’s disease. Archives of Neurology 62(9):
1377–1381.
(6)
Lumpkin, E. A., and M. J. Caterina.
2007. Mechanisms of sensory transduction in the
skin. Nature
445(7130): 858–865.
(7)
Woolf, C. J., and M. W. Salter 2000.
Neuronal plasticity: Increasing the gain in pain.
Science
288(5472): 1765–1768.
(8)
Luo, C., T. Kuner, and R. Kuner. 2014.
Synaptic plasticity in pathological pain. Trends in Neurosciences
37(6): 343–355.
(9)
Gustin, S. M., C. C. Peck, L. B.
Cheney, P. M. Macey, G. M. Murray, and L. A.
Henderson. 2012. Pain and plasticity: Is chronic
pain always associated with somatosensory cortex
activity and reorganization? Journal of Neuroscience 32(43):
14874–14884.
الفصل التاسع: التغيرات الدماغية المستمرة مدى الحياة
(1)
Anderson, A., and M. E. Thomason. 2013.
Functional plasticity before the cradle: A review of
neural functional imaging in the human fetus.
Neuroscience and
Biobehavioral Reviews 37(9B):
2220–2232.
(2)
Sweatt, J. D. 2013. The emerging field
of neuroepigenetics. Neuron 80(3):
624–632.
(3)
Weaver, I. C. G., N. Cervoni, F. A.
Champagne, A. C. D’Alessio, S. Sharma, J. R. Seckl,
S. Dymov, M. Szyf, and M. M. Meaney 2004. Epigenetic
programming by maternal behavior. Nature Neuroscience
7(8): 847–854.
(4)
McGowan, P. O., A. Sasaki, A. C.
D’Alessio, S. Dymov, B. Labonté, M. Szyf, G.
Turecki, and M. J. Meaney. 2009. Epigenetic
regulation of the glucocorticoid receptor in human
brain associates with childhood abuse. Nature Neuroscience
12(3): 342–348.
(5)
Brito, N. H., and K. G. Noble. 2014.
Socioeconomic status and structural brain
development. Frontiers in
Neuroscience 8:
276.
(6)
Davidson, R. J., and B. S. McEwan.
2011. Social influences on neuroplasticity: Stress
and interventions to promote well-being. Nature Neuroscience
15(5): 689–695.
(7)
Blakemore, S.-J. 2012. Imaging brain
development: The adolescent brain. NeuroImage 61(2):
397–406.
(8)
Elyada, Y. M., and A. Mizrahi. 2015.
Becoming a mother: Circuit plasticity underlying
maternal behavior. Current
Opinion in Neurobiology 35:
49–56.
(9)
Kim, P., J. F. Leckman, L. C. Mayes, R.
Feldman, X. Wang, and J. E. Swain. 2010. The
plasticity of human maternal brain: Longitudinal
changes in brain anatomy during the early postpartum
period. Behavioral
Neuroscience 124(5):
695–700.
(10)
McEwan, A. M., D. T. A. Burgess, C. C.
Hanstock, P. Seres, P. Khalili, S. C. Newman, G. B.
Baker, N. D. Mitchell, J. Khudabux-Der, P. S. Allen,
and J.-M. LeMelledo. 2012. Increased glutamate
levels in the medial prefrontal cortex in patients
with postpartum depression. Neuropsychopharmacology 37(11):
2428–2435.
(11)
Kim, P., P. Rigo, L. C. Mayes, R.
Feldman, J. F. Leckman, and J. E. Swain. 2014.
Neural plasticity in fathers of human infants.
Social
Neuroscience 9(5):
522–535.
(12)
Burke, S. N., and C. A. Barnes. 2006.
Neural plasticity in the aging brain. Nature Reviews
Neuroscience 7(1):
30–40.
(13)
Grady, C. 2012. Trends in
neurocognitive aging. Nature
Reviews Neuroscience 13(7):
491–505.
(14)
Rogalski, E. J., T. Gefen, J. Shi, M.
Samimi, E. Bigio, S. Weintraub, C. Geula, and M. M.
Mesulam. 2013. Youthful memory capacity in old
brains: Anatomic and genetic clues from the
Northwestern SuperAging Project. Journal of Cognitive
Neuroscience 25(1):
29–36.
(15)
Abutalebi, J., M. Canini, P. A. Della
Rosa, L. P. Sheung, D. W. Green, and B. S. Weekes.
2014. Bilingualism protects anterior temporal lobes
integrity in aging. Neurobiology of Aging 35(9):
2126–2133.
(16)
Costandi, M. 2014. Am I too old to
learn a new language? The
Guardian.
http://www.theguardian.com/education/2014/sep/13/am-i-too-old-to-learn-a-language/.
(17)
Wong, C., L. Chaddock-Heyman, M. W.
Voss, A. Z. Burzynska, C. Basak, K. I. Erickson, R.
S. Prakash, A. N. Szabo-Reed, S. M. Phillips, T.
Wojcicki, E. L. Mailey, E. McAuley, and A. F.
Kramer. 2015. Brain activation during dualtask
processing is associated with cardiorespiratory
fitness and performance in older adults. Frontiers in Aging
Neuroscience 12(7): 154. DOI:
10.3389/fnagi.2015.00154.
الفصل العاشر: خاتمة
(1)
Steele, C. J., J. A. Bailey, R. J.
Zatoore, and V. B. Penhune. 2013. Early musical
training and white matter plasticity: Evidence for a
sensitive period. Journal of
Neuroscience 33(3):
1282–1290.
(2)
Kandel, E. R., J. H. Schwartz, and T.
M. Jessell. 1995. Essentials
of Neural Science and Behavior.
Appleton & Lange.
(3)
McKenzie, I. A., D. Ohayon, H. Li, J.
P. de Faria, B. Emery, K. Tohyama, and W. D.
Richardson. 2014. Motor skill learning requires
active central myelination. Science 346(6207):
318–322.
(4)
Mensch, S., M. Baraban, R. Almeida, T.
Czopka, J. Ausborn, A. El Manira, and D. A. Lyons.
2015. Synaptic vesicle release regulates myelin
sheath number of individual oligodendrocytes
in vivo. Nature
Neuroscience 18:
628–630.
(5)
Wake, H., F. C. Ortiz, D. H. Woo, P. R.
Lee, M. C. Angulo, and R. D. Fields. 2013.
Nonsynaptic junctions on myelinating glia promote
preferential myelination of electrically active
axons. Nature
Communications 4:
7844.
(6)
Spitzer, N. C. 2015. Neurotransmitter
switching? No surprise. Neuron 86(5):
1131–1144.
(7)
Dehorter, N., G. Ciceri, G. Bartolini,
L. Lim, I. del Pino, and O. Marín. 2015. Tuning of
fast-spiking interneuron properties by an
activity-dependent transcriptional switch. Science 349(6253):
1216–1220.
(8)
Shaw, C. A., and J. A. McEachern
(eds.). 2001. Toward a
Theory of Neuroplasticity. Psychology
Press.
(9)
Sporns, O. 2012. Discovering the Human
Connectome. MIT
Press.
(10)
Huber, E., J. M. Webster, A. A. Brewer,
D. I. A. MacLeod, B. A. Wandell, G. M. Boynton, A.
R. Wade, and I. Fine. 2015. A lack of
experience-dependent plasticity after more than a
decade of recovered sight. Psychological Science 26(4):
393–401.