المراجع

  • Aharonov, Y., Bergmann, P., and Lebowitz, J. L. 1964. Time symmetry in the quantum process of measurement. In Quantum Theory and Measurement, ed. J. A. Wheeler and W. H. Zurek. Princeton University Press, Princeton, 1983. Originally in Phys. Rev. 134B, 1410−16.
  • Bekenstein, J. 1973. Black holes and entropy. Phys. Rev. D7, 2333−46.
  • Carter, B. 1971. Axisymmetric black hole has only two degrees of freedom. Phys. Rev. Lett. 26, 331−333.
  • Diósi, L. 1989. Models for universal reduction of macroscopic quantum fluctuations. Phys. Rev. A40, 1165−74.
  • Fletcher, J., and Woodhouse, N. M. J. 1990. Twistor characterization of stationary axisymmetric solutions of Einstein’s equations. In Twistors in Mathematics and Physics, ed. T. N. Bailey and R. J. Baston. LMS Lecture Notes Series 156. Cambridge University Press, Cambridge, U.K.
  • Gell-Mann, M., and Hartle, J. B. 1990. In Complexity, Entropy, and the Physics of Information. SFI Studies in the Science of Complexity, vol. 8, ed. W. Zurek. Addison-Wesley, Reading, Mass.
  • Geroch, R. 1970. Domain of dependence. J. Math. Phys. 11, 437−449.
  • Geroch, R., Kronheimer, E. H., and Penrose, R. 1972. Ideal points in spacetime. Proc. Roy. Soc. London A347, 545−567.
  • Ghirardi, G. C., Grassi, R., and Rimini, A. 1990. Continuous-spontaneous-reduction model involving gravity. Phys. Rev. A42, 1057−64.
  • Gibbons, G. W. 1972. The time-symmetric initial value problem for black holes. Comm. Math. Phys. 27, 87−102.
  • Griffiths, R. 1984. Consistent histories and the interpretation of quantum mechanics. J. Stat. Phys. 36, 219−272.
  • Hartle, J. B., and Hawking, S. W. 1983. Wave function of the Universe. Phys. Rev. D28, 2960−2975.
  • Hawking, S. W. 1965. Occurrence of singularities in open universes. Phys. Rev. Lett. 15, 689-690.
  • Hawking, S. W. 1972. Black holes in general relativity. Comm. Math. Phys. 25, 152−166.
  • Hawking, S. W. 1975. Particle creation by black holes. Comm. Math. Phys. 43, 199−220.
  • Hawking, S. W., and Penrose, R. 1970. The singularities of gravitational collapse and cosmology. Proc. Roy. Soc. London, A314, 529−48.
  • Hodges, A. P. 1982. Twistor diagrams. Physica, 114A, 157−75.
  • Hodges, A. P. 1985. A twistor approach to the regularization of divergences. Proc. Roy. Soc. London, A397, 341−74. Also, Mass eigenstates in twistor theory, ibid., 375-96.
  • Hodges, A. P. 1990. Twistor diagrams and Feynman diagrams. In Twistors in Mathematics and Physics, ed. T. N. Bailey and R. J. Baston. LMS Lecture Notes Series 156. Cambridge University Press, Cambridge, U.K.
  • Hodges, A. P., Penrose, R., and Singer, M. A. 1989. A twistor conformal field theory for four space-time dimensions. Phys. Lett. B216, 48−52.
  • Huggett, S. A., and Tod, K. P. 1985. An Introduction to Twistor Theory. London Math. Soc. student texts. LMS publication, Cambridge University Press, New York.
  • Hughston, L. P., Jozsa, R., and Wootters, W. K. 1993. A complete classification of quantum ensembles having a given density matrix. Phys. Lett. A183, 14−18.
  • Israel, W. 1967. Event horizons in static vacuum space-times. Phys. Rev. 164, 1776−1779.
  • Majorana, E. 1932. Atomi orientati in campo magnetico variabile. Nuovo Cimento, 9, 43−50.
  • Mason, L. J., and Woodhouse, N. M. J. 1996. Integrable Systems and Twistor Theory (tentative). Oxford University Press, Oxford (forthcoming).
  • Newman, R. P. A. C. 1993. On the structure of conformal singularities in classical general relativity. Proc. Roy. Soc. London A443, 473−92; II, Evolution equations and a conjecture of K. P. Tod, ibid., 493−515.
  • Omnès, R. 1992. Consistent interpretations of quantum mechanics. Rev. Mod. Phys. 64, 339−82.
  • Oppenheimer, J. R., and Snyder, H. 1939. On continued gravitational contraction. Phys. Rev. 56, 455−59.
  • Pais, A. 1994. Einstein Lived Here. Oxford University Press, Oxford.
  • Penrose, R. 1965. Gravitational collapse and space-time singularities. Phys. Rev. Lett. 14, 57−59.
  • Penrose, R. 1973. Naked singularities. Ann. N.Y. Acad. Set. 224, 125−134.
  • Penrose, R. 1976. Non-Linear gravitons and curved twistor theory. Gen. Rev. Grav. 7, 31−52.
  • Penrose, R. 1978. Singularities of space-time. In Theoretical Principles in Astrophysics and Relativity, ed. N. R. Liebowitz, W. H. Reid, and P. O. Vandervoort. University of Chicago Press, Chicago.
  • Penrose, R. 1979. Singularities and time-asymmetry. In General Relativity: An Einstein Centenary, ed. S. W. Hawking and W. Israel. Cambridge University Press, Cambridge, U.K.
  • Penrose, R. 1982. Quasi-local mass and angular momentum in general relativity. Proc. Roy. Soc. London, A381, 53−63.
  • Penrose, R. 1986. On the origins of twistor theory. In Gravitation and Geometry, (I. Robinson Festschrift volume), ed. W. Rindler and A. Trautman. Bibliopolis, Naples.
  • Penrose, R. 1992. Twistors as spin 3/2 charges. In Gravitation and Modem Cosmology (P. G. Bergmann’s 75th Birthday volume), ed. A. Zichichi, N. de Sabbata, and N. Sánchez. Plenum Press, New York.
  • Penrose, R. 1993. Gravity and quantum mechanics. In General Relativity and Gravitation 1992. Proceedings of the Thirteenth International Conference on General Relativity and Gravitation held at Cordoba, Argentina, 28 June−4 July 1992. Part 1, Plenary Lectures, ed. R. J. Gleiser, C. N. Kozameh, and Ο. M. Moreschi. Institute of Physics Publication, Bristol and Philadelphia.
  • Penrose, R. 1994. Shadows of the Mind: An Approach to the Missing Science of Consciousness. Oxford University Press, Oxford.
  • Penrose, R., and Rindler, W. 1984. Spinors and Space-Time, vol. 1: Two-Spinor Calculus and Relativistic Fields. Cambridge University Press, Cambridge.
  • Penrose, R., and Rindler, W. 1986. Spinors and Space-Time, vol. 2: Spinor and Twistor Methods in Space-Time Geometry. Cambridge University Press, Cambridge.
  • Rindler, W. 1977. Essential Relativity. Springer-Verlag, New York.
  • Robinson, D. C. 1975. Uniqueness of the Kerr black hole. Phys. Rev. Lett. 34, 905-906.
  • Seifert, H.-J. 1971. The causal boundary of space-times, J. Gen. Rel. and Grav. 1, 247−259.
  • Tod, K. P. 1990. Penrose’s quasi-local mass. In Twistors in Mathematics and Physics, ed. T. N. Bailey and R. J. Baston. LMS Lecture Notes Series 156. Cambridge University Press, Cambridge, U.K.
  • Ward, R. S. 1977. On self-dual gauge fields. Phys. Lett. 61A, 81-82.
  • Ward, R. S. 1983. Stationary and axi-symmetric spacetimes. Gen. Rel. Grav. 15, 105−9.
  • Woodhouse, N. M. J., and Mason, L. J. 1988. The Geroch group and non-Hausdorff twistor spaces. Nonlinearity, 1, 73−114.

جميع الحقوق محفوظة لمؤسسة هنداوي © ٢٠٢١