-
[1] Renewables Global Status Report 2007.
REN21 Publications,
2007.
-
[2] Mineral Commodity Summaries. U.S.
Geological Survey, 195:95, 2009.
-
[3] W. Adams. Cooking by Solar Heat. Scientific American, 1878:376, 1878.
-
[4] E. A. Alsema, M. J. de Wild-Scholten, and V. M. Fthenakis.
Environmental impacts of PV electricity generation—a critical comparison of
energy supply options. Proceedings of 21st European
Photovoltaic Solar Energy Conference, 50:97–147,
2006.
-
[5] D. Banks. An Introduction to
Thermogeology: Ground Source Heating and Cooling. Blackwell
Publishing, Oxford, UK, 2008.
-
[6] A. J. Bard and M. A. Fox. Artificial photosynthesis solar
splitting of water to hydrogen and oxygen. Acc.
Chem. Res., 28:141–145, 1995.
-
[7] J. K. Beatty, C. C. Peterson, and A. Chaokin. The Solar System. Cambridge University Press,
Cambridge, UK, 1999.
-
[8] H. A. Bethe. Energy Production in Stars. Physical Review, 55:434–456,
1939.
-
[9] H. A. Bethe and C. L. Critchfield. The Formation of
Deuterions by Proton Combination. Physical
Review, 54:248–254, 1938.
-
[10] S. Blanco. Solar parking lot with electric car charging
stations opens in Tennessee. AutoblogGreen, Aug 23, 2011.
-
[11] R. E. Blankenship. Molecular
Mechanisms of Photosynthesis. Blackwell Science, Oxford, UK,
2002.
-
[12] J. B. Bolton and D. O. Hall. Photochemical conversion and
storage of solar energy. Ann. Rev.
Energy, 4:353–401, 1979.
-
[13] M. Born and E. Wolf. Principles of
Optics. Seventh Edition, Cambridge University Press,
Cambridge, 1999.
-
[14] G. Boyle. Renewable
Energy. Second Edition, Oxford University Press, Oxford, UK,
2004.
-
[15] C. J. Brabec, N. S. Sariciftci, and J. C. Hummelen.
Plastic solar cells. Advanced Functional
Materials, 11:15–26, 2001.
-
[16] J. Britt and O. Ferekides. Thin-film CdS/CdTe solar cell
with 15.8% efficiency. Applied Physics
Letters, 62:2851–2852, 1993.
-
[17] K. Butti and J. Perlin. A Golden
Thread. Marion Boyers, London Boston,
1980.
-
[18] C. J. Chen. Introduction to
Scanning Tunneling Microscopy. Oxford University Press,
Oxford, UK, 2007.
-
[19] K. L. Chopra, P. D. Paulson, and V. Dutta. Thin-film solar
cells: an overview. Progress in
Photovoltaics, 12:69–92, 2004.
-
[20] C. Darwin. On the Origin of
Spicies. Oxford University Press, Oxford,
1859.
-
[21] K. S. Deffeyes. Beyond
Oil. Hill and Wang, New York, 2005.
-
[22] P. A. M. Dirac. The Quantum Theory of the Emission and
Absorption of Radiation. Proc. R. Soc.
London, A114: 243–265, 1927.
-
[23] A. Duffie and W. A. Beckman. Solar
Energy Thermal Processes. John Wiley and Sons, New York,
1974.
-
[24] A. Duffie and W. A. Beckman. Solar
Engineering of Thermal Processes. Third edition, John Wiley
and Sons, Hoboken, NJ, 2006.
-
[25] US DoE EERE. National Algal
Biofuels Technology Roadmap. US Department of Energy,
2010.
-
[26] A. Einstein. Ist die Trägheit eines Körpers von seinem
Energieinhalt abhängig? Annalen der
Physik, 18:639–641, 1905.
-
[27] A. Einstein. Über einen die Erzeugung und Verwandung des
Lichts betreffenden heuristischen Gesichtspunkt. Annalen der Physik, 17:132–148,
1905.
-
[28] M. M. Farid, A. M. Khudhair, and S. A. K. Razack S.
Al-Hallaj.
-
[29] E. Fermi. Nuclear
Physics. U. of Chicago Press, Chicago,
1950.
-
[30] K. Garber. Steven Chu, Obama’s Point Man on Energy, Says
Conservation Is ‘Sexy’. U.S. News and World
Report, March 2009, 2009.
-
[31] H. P. Garg, S. C. Mullik, and A. K. Bhargava. Solar Thermal Energy Storage. D. Reider
Publishing Company, Dordricht, 1985.
-
[32] M. Grätzel. Photoelectrochemical cells. Nature, 414: 338–344,
2001.
-
[33] M. Grätzel. Dye-sensitized solar cells. Journal of Photochemistry and Photobiology C:
Photochemistry Reviews, 4: 145–153,
2003.
-
[34] M. A. Green. Solar
cells. Prentice-Hal, Englewood Cliffs, NJ,
1982.
-
[35] M. A. Green. Limits on the open-circuit voltage and
efficiency of silicon solar cells imposed by intrinsic auger processes.
IEEE Transactions on Electron
Devices, 31:671–678, 1996.
-
[36] M. A. Green, J. Zhao, A. Wang, and S. R. Wenham. Progress
and outlook for high-efficiency crystalline silicon solar cells. Solar Energy Materials and Solar Cells, 65:
9–16, 2001.
-
[37] W. Heitler. The Quantum Theory of
Radiation. Clarendon Press, Oxford,
1954.
-
[38] P. Heremans, D. Cheyns, and B. P. Rand. Strategies for
increasing the efficieny of heterojunction organic photovoltaic cells:
Material selection and device architecture. Accounts
of Chemical research, 42:1740–1747,
2009.
-
[39] H. C. Hottel and A. Whillier. Evaluation of flat-plate
solar collector performance. Transcaction of
Conference on the Use of Solar Energy, II: 74–104,
1958.
-
[40] M. K. Hubbert. Nuclear Energy and the Fossil Fuels.
Shell Development Company
Publications, 95:1–40, 1956.
-
[41] C. E. Kennedy. Reiew of mid- to high-temperature absorber
materials. National Renewable Energy Laboratory
report, 520:31267, 2002.
-
[42] C. E. Kennedy and H. Price. Progress in development of
high-temperature solar-selective coating. Proceedings
of ISEC 2005, 520:36997, 2005.
-
[43] R. R. King, D. C. Law, K. M. Edmondson, C. M. Fetzer, G.
S. Kinsey, H. Yoon, R. A. Sherif, and N. H. Karam. 40% efficient metamorphic
GaInP/GaInAs/Ge multijunction solar cells. Appl.
Phys. Lett., 90:183516, 2007.
-
[44] S. A. Klein. Calculation of flat-plate collector loss
coefficients. Solar Energy, 17:79-80,
1975.
-
[45] S. A. Klein. Why wind power works for Denmark. Proc. ICE Civil Engineering.,
2005.
-
[46] S. A. Klein, W. A. Beckman, and A. Duffie. A design
procedure for solar heating systems. Solar
Energy, 18:113–127, 1975.
-
[47] M. M. Koltun. Selective optical
surfaces for solar energy converters. Allerton Press, Inc.
New York, 1981.
-
[48] Sandia National Laboratory. Sandia, Stirling Energy
Systems set new world record for solar-to-grid conversion efficiency.
News Release, February 12,
2008.
-
[49] A. D. Leite. Energy in
Brazil. Earthscan, London, 2009.
-
[50] P. Lenard. Über die lichtelektrische Wirkung. Annalen der Physik, 8:149–170,
1902.
-
[51] D. Linden and T. B. Reddy. Handbook of Batteries. Third Edition, McGraw-Hill, New York,
2002.
-
[52] B. Y. H. Liu and R. C. Jordan. The interrelationship and
characteristic distribution of direct, diffuse, and total solar radiation.
Solar Energy, 4(3): 1–19,
1960.
-
[53] J. Lund, B. Sanner, L. Rybach, R. Curtis, and G.
Hellstrom. Geothermal (ground-source) heat pumps: a world overview. GHC Bullitin, September: 31267,
2004.
-
[54] P. J. Lunde. Solar Thermal
Engineering. John Wiley and Sons, New York,
1980.
-
[55] C. Lyell. Elements of
Geology. C. H. Key & Co., Pittzburgh,
1839.
-
[56] D. J. C. MacKay. Sustainable
Energy—Without Hot Air. UIT, Cambridge, England,
2008.
-
[57] H. A. Macleod. Thin Film Optical
Filters. American Elsevier Publishing Company, Inc., New
York, 2005.
-
[58] J. C. Maxwell. A Dynamic Theory of
the Electromagnetic Field. Reprinted by Wipf and Stock
Publishers, 1996, 1864.
-
[59] McKinsey & Company. China’s Green Revolution.
McKinsey Global Energy and Materials,
July 2009:1–136.
-
[60] McKinsey & Company. Unlocking Energy Efficiency in
the U.S. Economy. McKinsey Global Energy and
Materials, July 2009:1–144.
-
[61] R. A. Millikan. A Direct Photoelectric Determination of
Planck’s h. Physical Review, 7:355–388,
1916.
-
[62] R. A. Millikan and I. B. Cohen. Autobiography of Robert A. Millikan. Arno Press, New York,
1980.
-
[63] D. Moché. Astronomy.
7th Ed, John Wiley and Sons, Hoboken, 2009.
-
[64] B. O’Regan and M. Grätzel. A low-cost, high-efficiency
solar cell based on dyesensitized colloidal TiO2
films. Nature, 353:737–740,
1991.
-
[65] J. I. Pankove. Optical processes
in semiconductors. Cover Publications, Inc. New York,
1971.
-
[66] J. P. Peixoto and A. H. Oort. Physics of Climate. Third Edition, John Wiley and Sons, New
York, 1992.
-
[67] J. Perlin. From Space to
Earth. Aatec Publications, Ann Arbor, Michigan,
1999.
-
[68] J. H. Phillips. Guide to the
Sun. Cambridge University Press, Cambridge, UK,
1992.
-
[69] M. Powalla and D. Bonnet. Thin-film solar cells based on
polycrystalline compound semiconductors CIS and CdTe. Advances in Optoelectronics, 2007:97545,
2007.
-
[70] Jr. R. W. Bliss. The derivations of several plate
efficiency factors in the design of flat-plate solar collectors. Solar Energy, 3:55–64,
1959.
-
[71] J. Risen. U. S. Identifies Vast Riches of Minerals in
Afghanistan. New York Times, June 13,
2010.
-
[72] H. H. Rogner. World Energy
Assessment: Energy and the Challenge of Sustainability.
United Nations Development Programme, 2000.
-
[73] M. Romero, R. Buck, and J. E. Pacheco. Water-in-glass
evacualte tube solar water heaters. Journal of Solar
Energy Engineering, 124:98–108, 2002.
-
[74] J. J. Romm. The Hype about
Hydrogen: Fact and Fiction in the Race to Save the Climate.
Island Press, New York, 2005.
-
[75] H. J. Sauer and R. H. Howell. Heat
Pump Systems. John Wiley and Sons, New York,
1983.
-
[76] J. L. Shay and S. Wagner. Efficient
CuInSe2/CdS solar cells. App. Phys. Lett., 27:89–90, 2007.
-
[77] W. Shockley and H. J. Queisser. Detailed balance limit of
efficiency of p-n junction solar cells. Journal of
Applied Physics, 32:510–519, 1961.
-
[78] B. J. Stanbery. Copper indium selenides and related
materials for photovoltaic devices. Critical Reviews
in Solid State and Materials Sciences, 27:73–117,
2002.
-
[79] M. Stix. The Sun, an
Introduction. Second Edition, Springer, New York,
2002.
-
[80] C. W. Tang. Two-layer organic photovoltaic cell. Appl. Phys. Lett., 48:183–185,
2004.
-
[81] W. Thompson. On the Age of Sun’s Heat. Macmillan’s Magazine, 5:388–393,
1862.
-
[82] W. Thompson. Nineteenth Century Clouds over the Dynamical
Theory of Heat and Light. Royal Institution
Proceedings, 16:363–397, 1900.
-
[83] T. Tiedje, E. Yablonovitch, G. D. Cody, and B. G. Brooks.
Limiting efficiency of silicon solar cells. IEEE
Transactions on Electron Devices, 31:711–716,
1996.
-
[84] D. Ugolini, J. Zachary, and J. Park. Options for hybrid
solar and conventional fossil plants. Bechtel
Technology Journal, 2:1–11, 2009.
-
[85] P.-F. Verhulst. Notice sur la loi que la population
poursuit dans son accroissement. Correspondance
mathematique et physique, 10:113–121,
1838.
-
[86] D. Voet and J. D. Voet. Biochemistry. John Wiley and Sons, Hoboken, NJ,
2004.
-
[87] S. Wagner, L. J. Shay, P. Migliorato, and H. M. Kasper.
CuImSe2/CdS heterojunction photovoltaic
detectors. Applied Physics Letters, 25:
434–435, 1974.
-
[88] Renewable Energy World. Global concentrated solar power
industry to reach 25 gw in 2020. REW,
2009.
-
[89] Q. C. Zhang. Recent progress in high-temperature
solar-selective coatings. Solar Energy Materials and
Solar Cells, 62:63–74, 2000.
-
[90] Q. C. Zhang, Y. Yin, and D. R. Mills. High-efficiency
M0-Al2O3 cermet selective
surfaces for high-temperature application. Solar
Energy Materials and Solar Cells, 40:43–53,
1996.
-
[91] J. Zhao, A. Wang, P. P. Altermatt, S. R. Wenham, and M. A.
Green. 24% efficient perl silicon solar cell: Recent improvements in
high-efficiency silicon solar cell rezsearch. Solar
Energy Materials and Solar Cells, 41–42:87–99,
1996.