مراجع

  • [1] Renewables Global Status Report 2007. REN21 Publications, 2007.
  • [2] Mineral Commodity Summaries. U.S. Geological Survey, 195:95, 2009.
  • [3] W. Adams. Cooking by Solar Heat. Scientific American, 1878:376, 1878.
  • [4] E. A. Alsema, M. J. de Wild-Scholten, and V. M. Fthenakis. Environmental impacts of PV electricity generation—a critical comparison of energy supply options. Proceedings of 21st European Photovoltaic Solar Energy Conference, 50:97–147, 2006.
  • [5] D. Banks. An Introduction to Thermogeology: Ground Source Heating and Cooling. Blackwell Publishing, Oxford, UK, 2008.
  • [6] A. J. Bard and M. A. Fox. Artificial photosynthesis solar splitting of water to hydrogen and oxygen. Acc. Chem. Res., 28:141–145, 1995.
  • [7] J. K. Beatty, C. C. Peterson, and A. Chaokin. The Solar System. Cambridge University Press, Cambridge, UK, 1999.
  • [8] H. A. Bethe. Energy Production in Stars. Physical Review, 55:434–456, 1939.
  • [9] H. A. Bethe and C. L. Critchfield. The Formation of Deuterions by Proton Combination. Physical Review, 54:248–254, 1938.
  • [10] S. Blanco. Solar parking lot with electric car charging stations opens in Tennessee. AutoblogGreen, Aug 23, 2011.
  • [11] R. E. Blankenship. Molecular Mechanisms of Photosynthesis. Blackwell Science, Oxford, UK, 2002.
  • [12] J. B. Bolton and D. O. Hall. Photochemical conversion and storage of solar energy. Ann. Rev. Energy, 4:353–401, 1979.
  • [13] M. Born and E. Wolf. Principles of Optics. Seventh Edition, Cambridge University Press, Cambridge, 1999.
  • [14] G. Boyle. Renewable Energy. Second Edition, Oxford University Press, Oxford, UK, 2004.
  • [15] C. J. Brabec, N. S. Sariciftci, and J. C. Hummelen. Plastic solar cells. Advanced Functional Materials, 11:15–26, 2001.
  • [16] J. Britt and O. Ferekides. Thin-film CdS/CdTe solar cell with 15.8% efficiency. Applied Physics Letters, 62:2851–2852, 1993.
  • [17] K. Butti and J. Perlin. A Golden Thread. Marion Boyers, London Boston, 1980.
  • [18] C. J. Chen. Introduction to Scanning Tunneling Microscopy. Oxford University Press, Oxford, UK, 2007.
  • [19] K. L. Chopra, P. D. Paulson, and V. Dutta. Thin-film solar cells: an overview. Progress in Photovoltaics, 12:69–92, 2004.
  • [20] C. Darwin. On the Origin of Spicies. Oxford University Press, Oxford, 1859.
  • [21] K. S. Deffeyes. Beyond Oil. Hill and Wang, New York, 2005.
  • [22] P. A. M. Dirac. The Quantum Theory of the Emission and Absorption of Radiation. Proc. R. Soc. London, A114: 243–265, 1927.
  • [23] A. Duffie and W. A. Beckman. Solar Energy Thermal Processes. John Wiley and Sons, New York, 1974.
  • [24] A. Duffie and W. A. Beckman. Solar Engineering of Thermal Processes. Third edition, John Wiley and Sons, Hoboken, NJ, 2006.
  • [25] US DoE EERE. National Algal Biofuels Technology Roadmap. US Department of Energy, 2010.
  • [26] A. Einstein. Ist die Trägheit eines Körpers von seinem Energieinhalt abhängig? Annalen der Physik, 18:639–641, 1905.
  • [27] A. Einstein. Über einen die Erzeugung und Verwandung des Lichts betreffenden heuristischen Gesichtspunkt. Annalen der Physik, 17:132–148, 1905.
  • [28] M. M. Farid, A. M. Khudhair, and S. A. K. Razack S. Al-Hallaj.
  • [29] E. Fermi. Nuclear Physics. U. of Chicago Press, Chicago, 1950.
  • [30] K. Garber. Steven Chu, Obama’s Point Man on Energy, Says Conservation Is ‘Sexy’. U.S. News and World Report, March 2009, 2009.
  • [31] H. P. Garg, S. C. Mullik, and A. K. Bhargava. Solar Thermal Energy Storage. D. Reider Publishing Company, Dordricht, 1985.
  • [32] M. Grätzel. Photoelectrochemical cells. Nature, 414: 338–344, 2001.
  • [33] M. Grätzel. Dye-sensitized solar cells. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 4: 145–153, 2003.
  • [34] M. A. Green. Solar cells. Prentice-Hal, Englewood Cliffs, NJ, 1982.
  • [35] M. A. Green. Limits on the open-circuit voltage and efficiency of silicon solar cells imposed by intrinsic auger processes. IEEE Transactions on Electron Devices, 31:671–678, 1996.
  • [36] M. A. Green, J. Zhao, A. Wang, and S. R. Wenham. Progress and outlook for high-efficiency crystalline silicon solar cells. Solar Energy Materials and Solar Cells, 65: 9–16, 2001.
  • [37] W. Heitler. The Quantum Theory of Radiation. Clarendon Press, Oxford, 1954.
  • [38] P. Heremans, D. Cheyns, and B. P. Rand. Strategies for increasing the efficieny of heterojunction organic photovoltaic cells: Material selection and device architecture. Accounts of Chemical research, 42:1740–1747, 2009.
  • [39] H. C. Hottel and A. Whillier. Evaluation of flat-plate solar collector performance. Transcaction of Conference on the Use of Solar Energy, II: 74–104, 1958.
  • [40] M. K. Hubbert. Nuclear Energy and the Fossil Fuels. Shell Development Company Publications, 95:1–40, 1956.
  • [41] C. E. Kennedy. Reiew of mid- to high-temperature absorber materials. National Renewable Energy Laboratory report, 520:31267, 2002.
  • [42] C. E. Kennedy and H. Price. Progress in development of high-temperature solar-selective coating. Proceedings of ISEC 2005, 520:36997, 2005.
  • [43] R. R. King, D. C. Law, K. M. Edmondson, C. M. Fetzer, G. S. Kinsey, H. Yoon, R. A. Sherif, and N. H. Karam. 40% efficient metamorphic GaInP/GaInAs/Ge multijunction solar cells. Appl. Phys. Lett., 90:183516, 2007.
  • [44] S. A. Klein. Calculation of flat-plate collector loss coefficients. Solar Energy, 17:79-80, 1975.
  • [45] S. A. Klein. Why wind power works for Denmark. Proc. ICE Civil Engineering., 2005.
  • [46] S. A. Klein, W. A. Beckman, and A. Duffie. A design procedure for solar heating systems. Solar Energy, 18:113–127, 1975.
  • [47] M. M. Koltun. Selective optical surfaces for solar energy converters. Allerton Press, Inc. New York, 1981.
  • [48] Sandia National Laboratory. Sandia, Stirling Energy Systems set new world record for solar-to-grid conversion efficiency. News Release, February 12, 2008.
  • [49] A. D. Leite. Energy in Brazil. Earthscan, London, 2009.
  • [50] P. Lenard. Über die lichtelektrische Wirkung. Annalen der Physik, 8:149–170, 1902.
  • [51] D. Linden and T. B. Reddy. Handbook of Batteries. Third Edition, McGraw-Hill, New York, 2002.
  • [52] B. Y. H. Liu and R. C. Jordan. The interrelationship and characteristic distribution of direct, diffuse, and total solar radiation. Solar Energy, 4(3): 1–19, 1960.
  • [53] J. Lund, B. Sanner, L. Rybach, R. Curtis, and G. Hellstrom. Geothermal (ground-source) heat pumps: a world overview. GHC Bullitin, September: 31267, 2004.
  • [54] P. J. Lunde. Solar Thermal Engineering. John Wiley and Sons, New York, 1980.
  • [55] C. Lyell. Elements of Geology. C. H. Key & Co., Pittzburgh, 1839.
  • [56] D. J. C. MacKay. Sustainable Energy—Without Hot Air. UIT, Cambridge, England, 2008.
  • [57] H. A. Macleod. Thin Film Optical Filters. American Elsevier Publishing Company, Inc., New York, 2005.
  • [58] J. C. Maxwell. A Dynamic Theory of the Electromagnetic Field. Reprinted by Wipf and Stock Publishers, 1996, 1864.
  • [59] McKinsey & Company. China’s Green Revolution. McKinsey Global Energy and Materials, July 2009:1–136.
  • [60] McKinsey & Company. Unlocking Energy Efficiency in the U.S. Economy. McKinsey Global Energy and Materials, July 2009:1–144.
  • [61] R. A. Millikan. A Direct Photoelectric Determination of Planck’s h. Physical Review, 7:355–388, 1916.
  • [62] R. A. Millikan and I. B. Cohen. Autobiography of Robert A. Millikan. Arno Press, New York, 1980.
  • [63] D. Moché. Astronomy. 7th Ed, John Wiley and Sons, Hoboken, 2009.
  • [64] B. O’Regan and M. Grätzel. A low-cost, high-efficiency solar cell based on dyesensitized colloidal TiO2 films. Nature, 353:737–740, 1991.
  • [65] J. I. Pankove. Optical processes in semiconductors. Cover Publications, Inc. New York, 1971.
  • [66] J. P. Peixoto and A. H. Oort. Physics of Climate. Third Edition, John Wiley and Sons, New York, 1992.
  • [67] J. Perlin. From Space to Earth. Aatec Publications, Ann Arbor, Michigan, 1999.
  • [68] J. H. Phillips. Guide to the Sun. Cambridge University Press, Cambridge, UK, 1992.
  • [69] M. Powalla and D. Bonnet. Thin-film solar cells based on polycrystalline compound semiconductors CIS and CdTe. Advances in Optoelectronics, 2007:97545, 2007.
  • [70] Jr. R. W. Bliss. The derivations of several plate efficiency factors in the design of flat-plate solar collectors. Solar Energy, 3:55–64, 1959.
  • [71] J. Risen. U. S. Identifies Vast Riches of Minerals in Afghanistan. New York Times, June 13, 2010.
  • [72] H. H. Rogner. World Energy Assessment: Energy and the Challenge of Sustainability. United Nations Development Programme, 2000.
  • [73] M. Romero, R. Buck, and J. E. Pacheco. Water-in-glass evacualte tube solar water heaters. Journal of Solar Energy Engineering, 124:98–108, 2002.
  • [74] J. J. Romm. The Hype about Hydrogen: Fact and Fiction in the Race to Save the Climate. Island Press, New York, 2005.
  • [75] H. J. Sauer and R. H. Howell. Heat Pump Systems. John Wiley and Sons, New York, 1983.
  • [76] J. L. Shay and S. Wagner. Efficient CuInSe2/CdS solar cells. App. Phys. Lett., 27:89–90, 2007.
  • [77] W. Shockley and H. J. Queisser. Detailed balance limit of efficiency of p-n junction solar cells. Journal of Applied Physics, 32:510–519, 1961.
  • [78] B. J. Stanbery. Copper indium selenides and related materials for photovoltaic devices. Critical Reviews in Solid State and Materials Sciences, 27:73–117, 2002.
  • [79] M. Stix. The Sun, an Introduction. Second Edition, Springer, New York, 2002.
  • [80] C. W. Tang. Two-layer organic photovoltaic cell. Appl. Phys. Lett., 48:183–185, 2004.
  • [81] W. Thompson. On the Age of Sun’s Heat. Macmillan’s Magazine, 5:388–393, 1862.
  • [82] W. Thompson. Nineteenth Century Clouds over the Dynamical Theory of Heat and Light. Royal Institution Proceedings, 16:363–397, 1900.
  • [83] T. Tiedje, E. Yablonovitch, G. D. Cody, and B. G. Brooks. Limiting efficiency of silicon solar cells. IEEE Transactions on Electron Devices, 31:711–716, 1996.
  • [84] D. Ugolini, J. Zachary, and J. Park. Options for hybrid solar and conventional fossil plants. Bechtel Technology Journal, 2:1–11, 2009.
  • [85] P.-F. Verhulst. Notice sur la loi que la population poursuit dans son accroissement. Correspondance mathematique et physique, 10:113–121, 1838.
  • [86] D. Voet and J. D. Voet. Biochemistry. John Wiley and Sons, Hoboken, NJ, 2004.
  • [87] S. Wagner, L. J. Shay, P. Migliorato, and H. M. Kasper. CuImSe2/CdS heterojunction photovoltaic detectors. Applied Physics Letters, 25: 434–435, 1974.
  • [88] Renewable Energy World. Global concentrated solar power industry to reach 25 gw in 2020. REW, 2009.
  • [89] Q. C. Zhang. Recent progress in high-temperature solar-selective coatings. Solar Energy Materials and Solar Cells, 62:63–74, 2000.
  • [90] Q. C. Zhang, Y. Yin, and D. R. Mills. High-efficiency M0-Al2O3 cermet selective surfaces for high-temperature application. Solar Energy Materials and Solar Cells, 40:43–53, 1996.
  • [91] J. Zhao, A. Wang, P. P. Altermatt, S. R. Wenham, and M. A. Green. 24% efficient perl silicon solar cell: Recent improvements in high-efficiency silicon solar cell rezsearch. Solar Energy Materials and Solar Cells, 41–42:87–99, 1996.

جميع الحقوق محفوظة لمؤسسة هنداوي © ٢٠٢٠